33 resultados para Salvage (Waste, etc.)
Resumo:
Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimal conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0(#)diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751).
Design and Operation of A 5.5 MWe Biomass Integrated Gasification Combined Cycle Demonstration Plant
Resumo:
The design and operation of a 5.5 MWe biomass integrated gasification combined cycle (IGCC) demonstration plant, which is located in Xinghua, Jiangsu Province of China, are introduced. It is the largest complete biomass gasification power plant that uses rice husk and other agricultural wastes as fuel in Asia. It mainly consists of a 20 MWt atmospheric circulating fluidized-bed gasifier, a gas-purifying system, 10 sets of 450 kW(e) gas engines, a waste heat boiler, a 1.5 MWe steam turbine, a wastewater treatment system, etc. The demonstration plant has been operating since the end of 2005, and its overall efficiency reaches 26-28%. Its capital cost is less than 1200 USD/kW, and its running cost is about 0.079 USD/kWh based on the biomass price of 35.7 USD/ton. There is a 20% increment on capital cost and 35% decrease on the fuel consumption compared to that of a 1 MW system without a combined cycle. Because only part of the project has been performed, many of the tests still remain and, accordingly, must be reported at a later opportunity.
Resumo:
Granules of waste tires were pyrolyzed tinder vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) similar to 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt% which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H-2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.
Resumo:
The solution of non-volatile solutes can be concentrated to saturation by membrane distillation. If the solute is easy to crystalize, the membrane distillation-crystallization phenomenon will appear during the membrane distillation of saturated solutions. It is possible that crystalline products are separated from concentrated solutions by a membrane process. In this work the PVDF capillary membrane, which was improved on hydrophobicity by using LiCl instead of a water-soluble polymer as an additive, has been used for treating the waste water of taurine. The crystalline product has been obtained from the waste water by the membrane distillation-crystallization technique. The results have shown good prospects for a membrane distillation application for treatment of industrial waste water.
Resumo:
介绍了专门用于ETC(不停车收费系统)中一种车辆检测器的软硬件设计方法。根据车辆检测器应用环境的特点给出了基准频率校正算法,可以对基准频率进行实时校正。并采用模糊模式识别算法进行车型识别。