23 resultados para SUPERCONDUCTOR
Resumo:
By using the average bond-gap model, the chemical bond properties of REBa2Cu3O7 were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bonds in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped in EuBa2Cu3O7-x and Sn-119 doped in YBa2Cu3O7-x were calculated by using the chemical surrounding factor, h, defined by covalency and electronic polarizability. The valence states and sites of Fe-57 in EuBa2Cu3O7 and Sn-119 in YBa2Cu3O7-x were identified.
Resumo:
The valence of Pr and relationship between bond covalency and T-c in Y1-xPrxBa2Cu3O7 (x = 0-1) have been studied using complex chemical bond theory. The results indicate that the depression of superconductivity in Y1-xPrxBa2Cu3O7 can be reasonably explained by bond covalency difference for the bonds between CuO2 plane and CuO chain. T-c decreases with the decreasing of bond covalency difference and reaches zero when bond covalency difference is zero (or bond covalency in CuO2 exceeds that in CuO chain) at Pr concentration 0.55 and valence +3.30. These are in good agreement with the experiments and meanwhile suggest that the valence of Pr is + 3.30 in Y1-xPrxBa2Cu3O7. The results also indicate that for Pr valence less than +3.15, superconductivity always exists for whatever Pr concentration, whereas for Pr with a valence of +4.0, superconductivity disappears as soon as Pr concentration exceeds 0.19. This supports with the viewpoint that higher valence Pr will contribute more electrons to CuO2 plane, filling the mobile holes responsible for conduction. For PrBa2Cu3O7 with no Ba-site Pr, our calculation suggests that it will be a superconductor if the average valence of Pr is less than +3.15. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
RBa2Cu3O7 (R = Pr, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm) has been studied using complex chemical bond theory. The results indicated that with the decreasing of R radius, the ionicities for all considered types of bond decrease. This is in good agreement with the experimental fact that T-c decreases with the decreasing of R radius. PrBa2Cu3O7 with no Ba-site Pr in this calculation is also predicted to be a superconductor. This supports the conclusion obtained by Blackstead et al. The ionicity for each bond obeys the following order: Ba-O > R-O > Cu(2)-O(1) > Cu(2)-O(2,3) > Cu(1)-O(4) similar to Cu(1)-O(1).
Resumo:
Mossbauer spectra of Fe-57 in a thick film YBa2(Cu0.97Fe0.03)(3)O7-x irradiated by a large dose of gamma-rays from Co-60 have been measured. The variation of the relative intensities of some subspectra of Fe-57 in the. Mossbauer spectra of the thick film YBa2(Cu0.97Fe0.03)(3)O7-x after irradiation can be observed. This variation indicates that the change of the coordination environment around some Fe atoms in the lattice occurs due to irradiation. The relative intensity of subspectrum D1(Fe) at the Cu(1) site decreases and that of subspectrum D4(Fe) at the Cu(1) site increases. This may be because of the possible oxygen atom hopping between the coordination environments of D1(Fe) and D4(Fe) in the lattice caused by irradiation. The effect of irradiation on the coordination environment around the Fe atom at the Cu(2) site is not appreciable. (C) 1997 Elsevier Science B.V.
Resumo:
Superconductor mixed oxides were often used as catalysts at higher temperature in gas phase oxidations, and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of YBa2Cu3O7+/-x and Y2BaCuO5+/-x in the phenol hydroxylation at lower temperature with H2O2 as oxygen donor was studied, and found that the superconductor YBa2Cu3O7+/-x, has no catalytic activity for phenol hydroxylation, but Y2BaCuO5+/-x does, even has better catalytic activity and stability than most previously reported ones. With the studies of catalysis of other simple metal oxides and perovskite-like mixed oxides, a radical substitution mechanism is proposed and the experimental facts are explained clearly, and draw a conclusion that the perovskite-like mixed oxides with (AO)(ABO(3)) and (AO)2(ABO(3)) structure have better catalytic activity than the simple perovskite oxides with (ABO(3))(3) structure alone, and (AO) structure unit is the key for the mixed oxides to have the phenol hydroxylation activity. No pollution of this process is very important for its further industrial application.
Resumo:
Superconductor Y-Ba-Cu-O mixed oxides were synthesized and their catalysis in phenol hydroxylation was studied too. Results show that, Y2BaCuO5 has better activity than that of YBa2Cu3O7-x, With the catalysis study of another mixed oxide La2CuO4 a conclusion that AO structure unit is the key for mixed oxides to have high activity in phyenol hydroxylation was drawn. Meanwhile, the effects of reaction temperature, medium and medium (water) pH on phenol hydroxylation catalyzed by Y2BaCuO5 and the stability of the mixed oxides were also studied.
Resumo:
EuBa2(Cu1-xFex)3O7-y has been investigated by the Fe-57 and Eu-151 Mossbauer effect. The Fe-57 Mossbauer spectra of the EuBa2(Cu1xFex)3O7-y without or with DC electric current (the current strength I = 0.5A) around the superconducting transition temperature have been measured. The results indicate that the isomer shift (IS) and the quadrupole splitting (QS) of the Fe replacing the Cu(2) vary neither with increasing the Fe content nor with the small DC eletric current passing the superconductor and that the IS and the QS of the Fe replacing the Cu(1) vary with the Fe content. Especially, the IS and the QS of the Fe (D3) replacing the Cu(1) are changed when the small electric current passes the superconductor at 80K.
Resumo:
The bioinorganic complexes of europium with N-acetyl-DL-alanine, N-acetyl-DL-valine, and DL-alanyl-DL-alanine have been synthesized and the Mossbauer spectra at room temperature have been measured for these solid state complexes. The Mossbauer parameters indicate that the water molecules in these complexes are not directly linked to the central europium ion and are outside the coordination sphere of europium and biological ligands, and that the chemical bond between the europium ion and the ligands may be predominantly ionic in character, with the possibility of partial covalent contribution.