28 resultados para SPECTROSCOPY, MOSSBAUER - Applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anode floating voltage is predicted and investigated for silicon drift detectors (SDDs) with an active area of 5 mm(2) fabricated by a double-side parallel technology. It is demonstrated that the anode floating voltage increases with the increasing inner ring voltage, and is almost unchanged with the external ring voltage. The anode floating voltage will not be affected by the back electrode biased voltage until it reaches the full-depleted voltage (-50 V) of the SDD. Theoretical analysis and experimental results show that the anode floating voltage is equal to the sum of the inner ring voltage and the built-in potential between the p(+) inner ring and the n(+) anode. A fast checking method before detector encapsulation is proposed by employing the anode floating voltage along with checking the leakage current, potential distribution and drift properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3C-SiC is a promising material for the development of microelectromechanical systems (MEMS) applications in harsh environments. This paper presents the LPCVD growth of heavily nitrogen doped polycrystalline 3C-SiC films on Si wafers with 2.0 mu m-thick silicon dioxide (SiO2) films for resonator applications. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H-2 in a newly developed vertical CVD chamber. NH3 was used as n-type dopant. 3C-SiC films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and room temperature Hall Effect measurements. It was shown that there is no voids at the interface between 3C-SiC and SiO2. Undoped 3C-SiC films show n-type conduction with resisitivity, Hall mobility, and carrier concentration at room temperature of about 0.56 Omega center dot cm, 54 cm(2)/Vs, and 2.0x 10(17) cm(-3), respectively. The heavily nitrogen doped polycrystalline 3C-SiC with the resisitivity of less than 10(-3) Omega center dot cm was obtained by in-situ doping. Polycrystalline SiC resonators have been fabricated preliminarily on these heavily doped SiC films with thickness of about 2 mu m. Resonant frequency of 49.1 KHz was obtained under atmospheric pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development of LPCVD growth of 3C-SiC thin films grown on Si mesas and thermally oxidized SiO2 masks over Si with an area of 150 × 100μm^2 and SiO2/Si substrates. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H2. 3C-SiC films on these substrates were characterized by optical microscopy, X-ray diffraction ( XRD ), X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM) and room temperature Hall effect measurements. It is shown that there were no voids at the interface between 3C-SiC and SiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective catalytic reduction of NO by CH4 was compared over In-Fe2O3/HZSM-5 catalysts prepared by impregnation and co-impregnation methods. It was found that the catalyst preparation method greatly affected the catalyst activity. The impregnated catalyst was very active, but the co-impregnated one showed poor activity. The In Fe2O3/HZSM-5 catalysts were investigated by Mossbauer spectroscopy. The results showed that indium cations entered into the iron oxide lattice in the co-impregnated catalyst, while the impregnated catalyst exhibited a more stable structure, when both of the catalysts were treated severely in the reaction atmosphere. Characterization by means of combined in situ temperature programmed reduction (TPR)- Mossbauer spectroscopy further revealed that the performances of the two catalysts were different in the TPR processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered mesoporous silica (MCM-41) particles with different morphologies were synthesized through a simple hydrothermal process. Then these silica particles were functionalized with luminescent YVO4:EU3+ layers via the Pechini sol-gel process. The obtained YVO4:Eu3+ and MCM-41 composites, which maintained the mesoporous structure of MCM-41 and the red luminescence property of YVO4:Eu3+ were investigated as drug delivery systems using ibuprofen (IBU) as model drug. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption, and photoluminescence (PL) spectra, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrated an effective enviromentally friendly synthesis route to prepare noble metallic (Au, Ag, Pt and Pd) nanoparticles (NPs) networks mediated by type I collagen in the absence of any seeds or surfactants. In the reactions, type I collagen served as stabilizing agent and assembly template for the synthesized metallic NPs. The hydrophobic interaction between collagen and mica interface as well as the hydrogen bonds between inter- and intra-collagen molecules play important roles in the formation of collagen-metallic NPs networks. The noble metallic NPs networks have many advantages in the applications of Surface-Enhanced Raman Scattering (SERS) and electrochemistry detection. Typically, the as-prepared Ag NPs networks reveal great Raman enhancement activity for 4-ATP, and can even be used to detect low concentration of DNA base, adenine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although colorless ionic liquids (ILs) are most desirable, as synthesized they frequently bear color, despite appearing pure by most analytical techniques. It leads to some uncertainties and limits for the fundamental research and applications of ILs, such as spectroscopy. Using 1-butyl-3-methylimidazolium bromide (BMIMBr), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) and 1-hexyl-3-methylimidazolium bromide (HMIMBr) as models, we demonstrated that following classic preparing method except that the water was added as solvent, colorless ILs could be facilely prepared. Neither critical pre-treatment of starting materials and pre-cautions during the reaction nor time-consuming and costly post-decolor-purification was needed, The effects of "on water" reaction conditions on preparing colorless IL and the reason why using water as solvent could produce colorless ILs were also preliminary investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-M-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was similar to 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mossbauer spectra of Fe-57 in a thick film YBa2(Cu0.97Fe0.03)(3)O7-x irradiated by a large dose of gamma-rays from Co-60 have been measured. The variation of the relative intensities of some subspectra of Fe-57 in the. Mossbauer spectra of the thick film YBa2(Cu0.97Fe0.03)(3)O7-x after irradiation can be observed. This variation indicates that the change of the coordination environment around some Fe atoms in the lattice occurs due to irradiation. The relative intensity of subspectrum D1(Fe) at the Cu(1) site decreases and that of subspectrum D4(Fe) at the Cu(1) site increases. This may be because of the possible oxygen atom hopping between the coordination environments of D1(Fe) and D4(Fe) in the lattice caused by irradiation. The effect of irradiation on the coordination environment around the Fe atom at the Cu(2) site is not appreciable. (C) 1997 Elsevier Science B.V.