117 resultados para SMART cDNA
Resumo:
花是被子植物特有的繁殖器官。花的发育取决于一个复杂的涉及到多个基因和过程的调控体系,因此花的起源和多样化过程实际上可以理解为这个调控体系的进化过程。所以,要全面地理解花和被子植物的起源和多样化,就必须研究花发育基因的功能和进化。 金粟兰科(Chloranthaceae)是基部被子植物的代表类群之一。与研究得比较深入的模式植物(如真双子叶植物中的拟南芥、金鱼草和矮牵牛等,和单子叶植物中的水稻和玉米等)相比,该科植物的花比较简单。花被以及雄蕊或雌蕊的丢失使得该科一些类群(如草珊瑚属Sarcandra和金粟兰属Chloranthus)具有被子植物中最简单的两性花(仅含一枚雄蕊和一枚雌蕊),而另一些类群(如Ascarina和雪香兰属Hedyosmum)具有了被子植物中最简单的单性花(雄花仅由一枚雄蕊、雌花由一枚雌蕊构成)。因此,对金粟兰科植物中花发育基因的研究不仅有助于理解花的起源和早期分化机制,还将为认识花部构造简单化的机制提供资料。 本研究以金粟兰(Chloranthus spicatus)为研究材料,从它的花和花序中分离得到了六个可能与花被的发生和发育有关的MADS-box基因,分析了它们的序列结构、系统发育关系、表达式样和进化中所受到的选择压力,探讨了金粟兰花发育和花被缺失的分子机理。主要研究结果包括: 1. 构建了金粟兰的花和花序的cDNA文库。构建工作使用了Clontech公司的SMART试剂盒,并采用其中的LD PCR方法,还使用了Stratagene公司的包装蛋白。该文库的初始滴度大约为5 × 106 pfu,重组率大约是90%, 插入片断几乎均大于0.5 kb。因此该文库质量优良,为以后的研究工作奠定了基础。 2. 从金粟兰的花中分离出了CsAP1、CsAP1a、CsAP1b、CsAP1c、CsAP3和CsSEP3基因。氨基酸序列分析结果表明它们都是MIKCc型MADS-box基因。系统发育分析结果表明CsAP1、CsAP1a、CsAP1b和CsAP1c与AP1/SQUA类基因聚在一起,而CsAP3和CsSEP3分别与AP3/DEF类和SEP1/2/3/4类基因聚在一起。CsAP1b和CsAP1c可能与CsAP1a互为复制本。但是二者在序列上有异常之处,因此可能只有CsAP1a具有功能。从序列上看CsAP1和CsSEP3能够正常行使功能。CsAP3的C末端出现了一个由鸟嘌呤到胸腺嘧啶的点突变,因此paleoAP3基序不完整,这可能影响了它的功能。 3. 用原位杂交的方法分析了CsAP1、CsAP3和CsSEP3的表达式样。CsAP1在穗状花序分生组织(包括苞片原基)、花原基、雄蕊和心皮原基、雄蕊裂片、花粉囊、胚珠、珠被和胚囊中表达。CsAP3在穗状花序分生组织中不表达,在花原基上发生雄蕊的位置开始表达,进而在雄蕊原基、雄蕊药隔裂片和花粉囊中表达,却不在心皮原基和心皮上表达。CsSEP3在穗状花序分生组织中也不表达,而在花原基、雄蕊原基、药隔裂片、花粉囊、心皮原基和胚珠中表达。CsAP1的表达模式反映了A功能基因决定花分生组织特性的原始作用;CsAP3的表达模式体现了B功能基因在雄性器官中的固有表达,反映了该类基因在两性器官分化中的原始作用;CsSEP3的表达模式反映了E功能基因提供成花背景(floral context)的作用。 4. 分析了已知的金粟兰的花发育相关基因受到的选择压力。同大多数近缘同源基因相比,CsAP1、CsAP3、CsPI、CsAG1受到负选择并且其强度没有明显差异;CsAG2和CsSEP3受到了更强的负选择;CsAP1a则受到减轻了的负选择。该结果表明除了CsAP1a之外,其它基因的功能可能没有改变。 5. 综上所述,在无花被的金粟兰中,仍然存在着与花被发育相关的基因,并且它们的功能没有改变,这充分反映了花发育ABC模型的保守性。金粟兰中花被的缺失可能与这些基因的下游基因有关,也可能与其它途径相关。CsAP1的复制以及CsAP3的末端突变可能是花被缺失之后的结果,而不是花被缺失的原因。
Resumo:
水母雪莲(Saussurea medusa Maxim)为名贵珍稀中药材,其主要药用成分为类黄酮,尤其是3-脱氧类黄酮。目前关于雪莲的研究主要集中在采用细胞培养生产类黄酮等方面,但对于雪莲类黄酮生物合成的分子机制了解甚少,极大限制了这一珍贵资源的利用。本研究采用水母雪莲红色系愈伤组织及悬浮细胞为材料,构建cDNA文库,从中克隆水母雪莲类黄酮次生代谢中的相关基因并对这些基因进行了深入的生物信息学分析、转基因研究初步确定其功能,以期了解雪莲类黄酮次生代谢的分子机制,为提高类黄酮的合成奠定基础。主要结果如下: 1. 成功地构建了水母雪莲红色系愈伤组织与悬浮细胞cDNA文库,原始文库滴度达到4×106pfu/ml,扩增文库滴度接近1011 pfu/ml,重组率达98%。PCR检测插入片段,均在0.5kb到3kb之间,1kb以上占62%。从文库中检测到了chs、dfr及Myb转录因子SmP,文库覆盖度达到要求且为PCR筛选文库提供了可能。 2. 采用部分简并引物,通过RT-PCR克隆了水母雪莲查尔酮异构酶基因Smchi特异探针,并根据这一探针序列设计特异引物,采用TD-PCR法筛选cDNA文库,获得Smchi cDNA序列,全长831bp,编码一个232氨基酸残基的蛋白。根据cDNA序列克隆了Smchi DNA序列,结果表明Smchi基因无内含子。Smchi cDNA序列与翠菊chi基因高度同源,ORF区域同源性高达84%,但推测氨基酸序列则只有79.3%。Smchi mRNA具有复杂的二级结构。SmCHI具有典型的Chalcone结构域,其二级结构与苜蓿CHI蛋白十分相似,7个α-螺旋与8个延伸链由随机结构联系起来。但其活性中心的第三个关键氨基酸残基N115为M115所取代,这一取代可能导致该蛋白无生物活性,也可能使它具有一般CHI不同的功能。构建Smchi正义、反义真核表达载体,通过农杆菌介导导入烟草,获得转正义、反义Smchi基因的烟草。转基因烟草花色未改变,但叶片总黄酮发生了显著的变化,50%转正义基因烟草总黄酮含量显著提高,最高比对照提高6倍,70%转反义基因烟草总黄酮含量显著下降,最多达85.1%,初步证明Smchi具有功能,并能有效调控烟草类黄酮次生代谢。因此,SmCHI可能是不同于已知CHI的一类新的CHI蛋白,它催化的反应可能与花色素合成无关,其反应机制也可能有所不同。 3. 伴随Smchi的克隆获得了一个黄烷酮3-羟化酶类似基因Smf3h的cDNA,全长1334bp,编码一个343aa的蛋白。根据这一cDNA序列克隆了Smf3h DNA序列,全长1630bp,结果表明该基因由4个外显子和3个内含子组成。Smf3h mRNA具有十分复杂的二级结构。 推测蛋白氨基酸同源性分析表明,SmF3H属于2OG-FeII_Oxy家族,与同一家族的的颠茄H6H的同源性为45%,与拟南芥F3H的同源性为40%,但对SmF3H、典型F3H及典型H6H推测蛋白二级结构、活性中心关键氨基酸残基的位置与相对距离、软件进行功能预测分析,发现SmF3H与F3H更相似。构建Smf3h的正义与反义真核表达载体,通过农杆菌介导导入烟草,但只获得一批转正义基因的烟草,反义基因导致烟草不能再生而未获得转反义基因烟草。转基因烟草花色未改变,叶片总黄酮也与对照相似,初步确认Smf3h与烟草类黄酮生物合成无关,而是一个既不属于f3h也不属于h6h的功能未确定的新基因。 4. 采用与克隆Smchi基因相似的方法,从cDNA文库中克隆了SmP基因cDNA,全长969bp,编码一个256 aa的蛋白质。根据cDNA序列克隆了SmP基因的DNA序列,结果表明,SmP基因无内含子。SmP基因cDNA 一级结构及mRNA二级结构预测分析表明,该基因A+T含量很高(63%),所形成二级结构以A-T配对为主,其稳定性可能较差。SmP推测蛋白序列具有R2R3-Myb转录因子的典型特征,在N-端具有两个Myb DNA-binding Domain,其二级结构与鸡Myb转录因子1A5J十分相似,与其他基因如水稻OsMYB、番茄ThMYB的同源区域主要集中在这一结构域,分别为71.3%和70.8%;C-端富含丝氨酸,与烟草NtMYB、葡萄VlMYB等类黄酮调控因子相似,都呈寡聚体分布,并具有相同的保守磷酸化位点S170与S206。构建SmP基因真核表达载体,通过农杆菌介导导入烟草,获得大量转基因烟草。转基因烟草花色未发生改变,但51%的转基因烟草叶片总黄酮含量都显著提高(0.5-6倍),表明SmP具有促进烟草类黄酮生物合成的功能,但所调控的支路与花色素合成无关。初步试验结果表明,转SmP基因烟草对蚜虫具有很高的抗性,可有效地抑制蚜虫在烟草上的生长,抑制率最高可达92%-100%。这一抗性与烟草中类黄酮的积累可能具有直接的联系,但还需要进一步的试验证明。 5. 与美国俄亥俄州立大学Erich Grotewold 博士实验室合作,完成了微型EST库50个克隆的测序并进行了分析,从中获得了水母雪莲花色素合酶基因SmANS及醛脱氢酶基因SmALDH的特异探针。根据SmANS特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmANS的cDNA序列,全长1229bp,编码一个356aa的蛋白质。SmANS在cDNA水平上与同属的翠菊ANS基因高度同源,但同源区域集中在ORF区域,达到80%,mRNA 预测二级结构十分复杂;推测氨基酸序列与翠菊ANS同源性达到82.9%。SmANS属于2OG-FeII_Oxy家族,在2OG-FeII_Oxy结构域高度保守,与翠菊、甜橙ANS保守结构域同源性达到94%。预测蛋白二级结构以α-螺旋-β-折叠为主,由7个主螺旋和11个主β-折叠及随机结构连接而成,并具有2OG-FeII_Oxy家族活性中心的三个保守的组氨酸残基(His84、His235、His291)和一个天冬氨酸残基(Asp237)。 6. 根据微型EST库中获得的SmALDH特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmALDH基因cDNA 序列,全长1664bp,编码一个491aa的蛋白质。SmALDH基因cDNA具有独特的碱基组成,3/-UTR富含A+T,占该区域碱基总量的80%,5/-UTR的A+T和G+C各占50%,比ORF区域(52%)还低,因此其mRNA二级结构中5/-UTR可以单独形成自身二级结构并且十分稳定,这可能影响基因的表达。这一现象在水稻、玉米等植物中也存在。SmALDH在cDNA水平上在ORF区域与拟南芥、藏红花、水稻等具有较高同源性,分别为64.03%、63.89%、63.72%,但在推测蛋白氨基酸序列水平上同源性反而较低,分别为54.9%、54.3%、54.0%。SmALDH缺少线粒体定位信号,为胞质醛脱氢酶,具有一个Aldedh 保守结构域,还具有与1OF7-H相似的以α-螺旋-β-折叠为主的二级结构,由10个主螺旋和15个主β-折叠及随机结构连接而成。由于ALDH在植物细胞乙醇发酵中具有解除醛类物质毒害的功能,因此SmALDH基因的克隆为改造细胞自身以适应发酵培养条件,解决水母雪莲细胞大规模培养中需氧问题提供了可能。