46 resultados para SATELLITE TRACKING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel vision chip for high-speed target tracking. Two concise algorithms for high-speed target tracking are developed. The algorithms include some basic operations that can be used to process the real-time image information during target tracking. The vision chip is implemented that is based on the algorithms and a row-parallel architecture. A prototype chip has 64 x 64 pixels is fabricated by 0.35 pm complementary metal-oxide-semiconductor transistor (CMOS) process with 4.5 x 2.5 mm(2) area. It operates at a rate of 1000 frames per second with 10 MHz chip main clock. The experiment results demonstrate that a high-speed target can be tracked in complex static background and a high-speed target among other high-speed objects can be tracked in clean background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical formulas for estimating the hourly and daily radiation incident on planes of azimuth three step tracking and hour angle three step tracking have been derived in this paper. Based on the hourly solar radiation data of an average day in each month at Er-Lian-Hao-Te city, the hourly and monthly radiation received by planes of these two kinds of tracking have been calculated. The results show that in this district, one axis azimuth three step tracking and hour angle three step tracking could, respectively, obtain 66.5% and 63.3% higher radiation than that on the horizontal surface all year. Moreover, a two axis azimuth three step tracking plane could receive 72% more radiation than the horizontal surface. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most traditional satellite constellation design methods are associated with a simple zonal or global, continuous or discontinuous coverage connected with a visibility of points on the Earth's surface. A new geometric approach for more complex coverage of a geographic region is proposed. Full and partial coverage of regions is considered. It implies that, at any time, the region is completely or partially within the instantaneous access area of a satellite of the constellation. The key idea of the method is a two-dimensional space application for maps of the satellite constellation and coverage requirements. The space dimensions are right ascension of ascending node and argument of latitude. Visibility requirements of each region can be presented as a polygon and satellite constellation as a uniform moving grid. At any time, at least one grid vertex must belong to the polygon. The optimal configuration of the satellite constellation corresponds to the maximum sparse grid. The method is suitable for continuous and discontinuous coverage. In the last case, a vertex belonging to the polygon should be examined with a revisit time. Examples of continuous coverage for a space communication network and of the United States are considered. Examples of discontinuous coverage are also presented.