22 resultados para Rigid registration
Resumo:
Reactions of zinc(II) or cadmium(II) salts with terephthalic acid (H(2)tp) and 1,3-bis(4-pyridyl) propane (bpp) have afforded four coordination polymers at room temperature, [Zn(mu-tp)(mu-bpp)](n)center dot 2nH(2)O (1), [Cd-2(mu-tp)(2)(mu-bpp)(3)](n)center dot 2nH(2)O (2), [Cd(mu-tp)(mu-bpp)(H2O)](n)center dot nH(2)O (3), and [Cd-2(mu-tp)(mu-bpp)(2)(bpp)(2)Br-2](n) (4). Single-crystal X-ray diffraction has revealed interesting topological features for these compounds.
Resumo:
A novel method to produce multilayer films has been developed by layer-by-layer assembly of single-charged ions and a rigid polyampholyte containing unbalanced charges in each of its repeat units.
Resumo:
The amphiphilic PEG1 500-b-EM AP-b-PEG1 500 (EM PAP) triblock copolymer of poly(ethylene glycol) (PEG) and emeraldine aniline-pentamer (EM AP) in its concentrated solution can self-assemble into a special shape like "sandglass", as observed by transmission electron microscopy (TEM), field emission scanning electron microscopy (ESEM) and atomic force microscopy (AFM). This "sandglass"- shaped assembly is composed of several "rods" aggregated in the middle, with every "rod" being about 8 VLrn in length and 300 nm in diameter.
Resumo:
The rigid backbone of the poly(3-butylthiophene) molecule adopts a perpendicular orientation with respect to the substrate by using a solvent-vapor treatment (see figure). Small and closely contacting spherulites instead of conventional whisker-like crystals are achieved. This could be utilized to improve charge-carrier mobility particularly in the direction normal to the film plane by designing and constructing thick crystalline domains in the functional layer.
Resumo:
A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.
Resumo:
In this article, we employed triphenylmethanethiol (TPMT) as a novel rigid agent for capping gold nanoparticles and the TPMT monolayer-protected gold nanoparticles were characterized by various analytical techniques. High-resolution transmission electron microscopy showed a narrow dispersed gold core with an average core diameter of ca. 3.6 nm. The UV/vis spectrum revealed the surface plasmon absorbance at 528 nm. The p-pi conjugated structure of the TPMT ligand was confirmed by nuclear magnetic resonance. Differential scanning calorimetry and Fourier transform infrared spectroscopy revealed the rigid nature of the TPMT chains.