25 resultados para Responsible consumption
Resumo:
A SOI thenno-optic variable optical attenuator with U-grooves based on a multimode interference coupler principle is fabricated. The dynamic attenuation range is 0 to 29 dB; at the wavelength range between 1510 nm and 1610nm, and the maximum power consumption is only l30mW. Compared to the variable optical attenuator without U-groove, the maximum power consumption decreases more than 230mW
Resumo:
The Karman vortex shedding is totally suppressed in flows past a wavy square-section cylinder at a Reynolds number of 100 and the wave steepness of 0.025. Such a phenomenon is illuminated by the numerical simulations. In the present study, the mechanism responsible for it is mainly attributed to the vertical vorticity. The geometric disturbance on the rear surface leads to the appearance of spanwise flow near the base. The specific vertical vorticity is generated on the rear surface and convecting into the near wake. The wake flow is recirculated with the appearance of the pair of recirculating cells. The interaction between the upper and lower shear layers is weakened by such cells, so that the vortex rolls could not be formed and the near wake flow becomes stable.
Resumo:
A new methodology based on the use of CFD is proposed to estimate the energy consumptions in a DTS (DOUBLE-TUBE-SOCKET) pneumatic conveying. A simple computational program based on this methodology is developed. It can directly give the lowest energy consumption and the compatible gas consumption by only input the distance of conveying and the conveying tonnage. This computational program has been validated through our experimental work.
Resumo:
In this paper, the fabrication method of a new type of carbon monoxide gas sensor based on SnOx with low power consumption and its sensing characteristics have been reported. The electric conductance of this type of sensor evolves oscillation form regularly when the sensor is exposed to low level of CO gas. The oscillation amplitude is directly proportional to the concentration of CO gas over a wide range. The effects of relevant factors. such as. humidity, temperature and interference gases on the sensor properties were examined. The sensing oscillation response mechanism was also discussed.
Resumo:
To investigate the effects of body size and water temperature on feeding and growth in the sea cucumber Apostichopus japonicus (Selenka), the maximum rate of food consumption in terms of energy (C-maxe; J day(-1)) and the specific growth rate in terms of energy (SGRe; % day(-1)) in animals of three body sizes (mean +/- SE) - large (134.0 +/- 3.5 g), medium (73.6 +/- 2.2 g) and small (36.5 +/- 1.2 g) - were determined at water temperatures of 10, 15, 20, 25 and 30 degrees C. Maximum rate of food consumption in terms of energy increased and SGRe decreased with increasing body weight at 10, 15 and 20 degrees C. This trend, however, was not apparent at 25 and 30 degrees C, which could be influenced by aestivation. High water temperatures (above 20 degrees C) were disadvantageous to feeding and growth of this animal; SGRe of A. japonicus during aestivation was negative. The optimum temperatures for food consumption and for growth were similar and were between 14 and 15 degrees C, and body size seemed to have a slight effect on the optimal temperature for food consumption or growth. Because aestivation of A. japonicus was temperature dependent, the present paper also documented the threshold temperatures to aestivation as indicated by feeding cessation. Deduced from daily food consumption of individuals, the threshold temperature to aestivation for large and medium animals (73.3-139.3 g) was 24.5-25.5 degrees C, while that for small animals (28.9-40.7 g) was between 25.5 and 30.5 degrees C. These values are higher than previous reports; differences in sign of aestivation, experimental condition and dwelling district of test animals could be the reasons.
Resumo:
In "high nitrate, low chlorophyll" (HNLC) ocean regions, iron has been typically regarded as the limiting factor for phytoplankton production. This "iron hypothesis" needs to be tested in various oceanic environments to understand the role of iron in marine biological and biogeochemical processes. In this paper, three in vitro iron enrichment experiments were performed in Prydz Bay and at the Polar Front north of the Ross Sea, to study the role of iron on phytoplankton production. At the Polar Front of Ross Sea, iron addition significantly (P < 0.05, Student's t-test) stimulated phytoplankton growth. In Prydz Bay, however, both the iron treatments and the controls showed rapid phytoplankton growth, and no significant effect (P > 0.05, Student's t-test) as a consequence of iron addition was observed. These results confirmed the limiting role of iron in the Ross Sea and indicated that iron was not the primary factor limiting phytoplankton growth in Prydz Bay. Because the light environment for phytoplankton was enhanced in experimental bottles, light was assumed to be responsible for the rapid growth of phytoplankton in all treatments and to be the limiting factor controlling field phytoplankton growth in Prydz Bay. During the incubation experiments, nutrient consumption ratios also changed with the physiological status and the growth phases of phytoplankton cells. When phytoplankton growth was stimulated by iron addition, N was the first and Si was the last nutrient which absorption enhanced. The Si/N and Si/P consumption ratios of phytoplankton in the stationary and decay phases were significantly higher than those of rapidly growing phytoplankton. These findings were helpful for studies of the marine ecosystem and biogeochemistry in Prydz Bay, and were also valuable for biogeochemical studies of carbon and nutrients in various marine environments.
Resumo:
配送车每次配送的利用率大小是提高配送效率的主要因素,因此设计一种启发式算法使配送车一次装载的标准塑料周转箱尽可能多,提高配送车空间利用率。最后的仿真实验验证了上述配送方法的实用性,提出的零部件配送管理方法,只需使用较少的配送工人,同时降低了线旁库存,能为企业节省人力,降低生产成本。