18 resultados para Remotely operated vehicle
Resumo:
随着海洋科学考察和水下工程的日益增多,人类的研究趋势不断地向海洋深处发展。然而,水下环境与陆地和空间环境相比更加恶劣,对人类的威胁更大,因此水下机器人作为人的替代者,正在越来越多地在实际水下操作中应用。传统的水下机器人是采用主从遥操作控制,陆地上或母船上的操作员借助水下摄像机观察机器人的工作情况,通过主手或操纵杆操纵机器人,这种工作方式已不能满足当前水下作业的需要,所以研制具有高效率、高操作精度的水下机器人系统成为当今机器人领域的研究热点。本论文的研究内容是国家“863”高技术计划研究项目“虚拟监控遥操作水下机器人系统”的重要组成部分,以水下机器人检查海底石油钻井平台导管架焊缝的实际工作为背景,建立了一个完整的水下机器人实验系统,详细研究了虚拟遥操作控制、机器人监控控制及ROV(Remotely Operated Vehicles)模糊控制导航方法,并将这些控制方法应用到所建立的机器人系统中,完成实际操作实验。为了解决运动学逆解无解析解一类机械手的实时控制问题,本文提出一种适合于实时求解的算法--“跟踪搜索算法",并使用该算法实现了5DOF水下机械手的运动学解算和实时控制。水下机器人载体ROV的导航问题一直被研究者们关注,在水下机器人控制中占重要地位。本文提出一种模糊控制导航方法,使用统一控制模式实现ROV在3D空间的导航,避免了ROV水下导航中多模控制切换点难以确定和切换过程造成ROV波动的问题。根据对ROV和机械手运劫特征的分析,以及水下环境的先验知识,建立了机器人和水下环境的虚拟模型。为了适应机器人在非结构化环境中工作的要求,提出“交互虚攒建模”方法,在环境发生变化时,重新建立虚拟环境模型,使虚拟环境反映真实环境的变化。在此基础上,建立了一个多功能虚拟仿真平台。监控控制是目前水下机器人最好的控制方法,本论文将虚拟现实技术应用在机器人监控系统中,提出虚拟监控系统的双层结构,发展了监控思想。研究并实现了四种虚拟监控控制方法:(1)基于虚拟显示的控制方法,(2)基于虚拟视觉的控制方法,(3)虚拟层任务规划,(4)虚拟投射控制。将上述各部分集成,设计并实现了虚拟监控遥操作控制系统,以该控制系统为核心,连接真实水下机器人和视觉系统,建立了虚拟监控遥操作水下机器人实验系统。本论文提出的系统结构、虚拟建模方法、模糊导航方法,虚拟监控控制方法均应用到机器人实验系统中。实际操作结果和仿真实验结果验证了所提出的虚拟监控系统结构的合理性,方法的正确性,体现了这些结构和方法的先进性。该实验系统和上述实验结果作为“863”项目“虚拟监控遥操作水下机器人系统”的重要组成部分,通过了专家组的验收,得到专家们的肯定。此外,为了适应开展网络遥操作研究的需要,本论文基于Internet网络技术,建立了机器人的网络通讯框架,使本论文中建立的机器人系统具有网络扩展性。论文的研究工作为研制可实用的高性能水下机器人系统奠定了基础,研究成果对水下机器人遥操作具有理论指导意义,为其实际应用提供了技术实现的途径。
Resumo:
动力定位 (DynamicPositioning(DP) )技术是水下机器人的关键技术之一。因此针对当前动力定位主要在缆控水下机器人 (ROV)中应用的情况 ,给出了ROV动力定位技术的实施方法。通过声学定位技术确定ROV的坐标 ,计算出与期望位姿的差 ,将其作为神经网络控制器的输入量来控制ROV ,从而进行动力定位。同时还重点研究了ROV动力定位中的主要研究内容即水声定位技术和定位控制技术的构建。
Resumo:
随着水下机器人技术的不断进步,水下机器人的作业范围和作业深度不断增加,深海水下机器人在深海领域有着其他手段无法比拟的优势。在深海区域,海面的海况条件相对比较恶劣,支持母船受风、浪、涌、流影响而产生较大幅度的升沉运动对有缆水下机器人正常作业和收放操作有较大的影响,水下机器人中继器的升沉运动甚至可以造成系缆的损坏而使机器人本体丢失。如何提高水下机器人在相对恶劣海况条件下的安全性能、特别是水下机器人与中继器安全的释放与回收成为当前深海有缆水下机器人开发所需要面临的一个重要问题。有缆水下机器人主动升沉补偿技术的研究,对于提高水下机器人在相对恶劣海况条件下的安全作业和收放具有重要的意义,对提高水下机器人抵御恶劣海况的能力具有重要的作用。 本文结合中国科学院沈阳自动化研究所研制的作业型遥控潜水器(ROV)在4级海况条件下安全作业和收放的实际需求以及“十五”期间国家863计划专题项目“基于母船升沉预测的深海装备主动升沉补偿测控单元的研究开发”的要求,开展有缆水下机器人主动升沉补偿技术研究,降低相对恶劣海况条件下母船升沉运动对水下机器人中继器的干扰,保证水下机器人与中继器安全的释放与回收。重点研究母船升沉运动的测量方法;研究以液压绞车为动力机构的主动升沉补偿控制方法;研究母船与水下机器人中继器升沉运动预报方法;研究母船、铠缆、水下机器人及中继器系统的有限元建模与运动分析方法。本文的主要研究内容如下: (1)研究海况条件、船舶尺寸与母船升沉运动之间的关系,分析在4级海况条件下作业型ROV母船升沉运动幅值和频率的分布范围和规律。利用惯性测量传感器测量母船升沉运动加速度值,通过积分和数字高通滤波处理得到母船升沉速度或位移信号。研究升沉运动测量误差来源,设计升沉运动自适应滤波器。 (2)以有缆水下机器人液压收放绞车为动力机构,开展基于常规液压收放绞车的主动升沉补偿控制方法研究。针对液压收放绞车的功率无法满足主动升沉补偿闭环控制的要求,研究在欠功率条件下液压绞车主动升沉补偿前馈控制策略,利用控制预值消除不对称负载作用时出现的液压绞车运动偏移。控制算法简单可靠,便于工程实现。 (3)针对液压绞车大负载、大惯量且系统参数时变、非线性等特征,研究液压绞车主动升沉补偿预测控制策略,通过水下机器人主动升沉补偿预测控制仿真实验分析液压绞车主动升沉补偿预测控制的补偿效率。 (4)研究母船与水下机器人中继器升沉运动预报方法。利用AR模型以及母船升沉运动历史数据,实现对母船未来极短时间内的运动预报,为液压绞车预测控制算法的应用提供参考轨迹。研究基于ARMA模型以及母船和水下机器人中继器升沉运动历史数据的水下机器人中继器升沉运动预报方法。 (5)通过升沉运动测量实验分析升沉运动测量模块的可靠性和测量精度的影响因素。利用模拟液压绞车主动升沉补偿实验验证常规液压绞车主动升沉补偿前馈控制的效率。并利用作业型ROV收放系统的实际液压绞车进行主动升沉补偿实验。结合模拟液压绞车与作业型ROV液压绞车主动升沉补偿实验的实验结果,分析4级海况条件下液压绞车主动升沉补偿控制效率。 (6)利用有限元理论建立母船、铠缆、水下机器人及中继器的有限元集中质量模型,通过数值方法求解有限元方程,得到母船与水下机器人中继器之间的运动耦合关系,仿真分析在液压绞车主动升沉补偿控制状态下水下机器人中继器升沉运动规律及铠缆张力变化规律。