22 resultados para Radar in hydrology.
Resumo:
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.
Resumo:
A parametric method that extracts the ocean wave directional spectra from synthetic aperture radar (SAR) image is presented. The 180 degrees ambiguity of SAR image and the loss of information beyond the azimuthal cutoff can be overcome with this method. The ocean wave spectra can be obtained from SAR image directly by using iteration inversion mapping method with forward nonlinear mapping. Some numerical experiments have been made by using ERS-1 satellite SAR imagette data. The ocean wave direction retrieved from SAR imagette data is in agreement with the wind direction from the scatterometer data.
Resumo:
Wave-number spectrum technique is proposed to retrieve coastal water depths by means of Synthetic Aperture Radar (SAR) image of waves. Based on the general dispersion relation of ocean waves, the wavelength changes of a surface wave over varying water depths can be derived from SAR. Approaching the analysis of SAR images of waves and using the general dispersion relation of ocean waves, this indirect technique of remote sensing bathymetry has been applied to a coastal region of Xiapu in Fujian Province, China. Results show that this technique is suitable for the coastal waters especially for the near-shore regions with variable water depths.
Resumo:
A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.
Resumo:
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea. The studied images show three nonlinear internal waves in a packet. A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images. Assuming that the ocean is a two-layer finite depth system, we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula. Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.