87 resultados para RADIATIVE ENERGY-LOSS
Resumo:
We present results on the system size dependence of high transverse momentum di-hadron correlations at root s(NN) = 200 GeV as measured by STAR at RHIC. Measurements in d + Au, Cu + Cu and Au + Au collisions reveal similar jet-like near-side correlation yields (correlations at small angular separation Delta phi similar to 0, Delta eta similar to 0) for all systems and centralities. Previous measurements have shown Chat the away-side (Delta phi similar to pi) yield is suppressed in heavy-ion collisions. We present measurements of the away-side Suppression as a function of transverse momentum and centrality in Cu + Cu and Au + Au collisions. The suppression is found to be similar in Cu + Cu and An + An collisions at a similar number of participants. The results are compared to theoretical calculations based on the patron quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will further constrain dynamic energy loss models and provide information about the dynamic density profile in heavy-ion collisions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear Thomson backscattering of an intense Gaussian laser pulse by a counterpropagating energetic electron is investigated by numerically solving the electron equation of motion taking into account the radiative damping force. The backscattered radiation characteristics are different for linearly and circularly polarized lasers because of a difference in their ponderomotive forces acting on the electron. The radiative electron energy loss weakens the backscattered power, breaks the symmetry of the backscattered-pulse profile, and prolongs the duration of the backscattered radiation. With the circularly polarized laser, an adjustable double-peaked backscattered pulse can be obtained. Such a profile has potential applications as a subfemtosecond x-ray pump and probe with adjustable time delay and power ratio. (c) 2006 American Institute of Physics.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.
Resumo:
In this study, we investigated the effects of animal-plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft-shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1-4) were formulated with different animal-plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2-4. There was no significant difference in crude protein digestibility among diets 1-4. The ADC of carbohydrate was significantly increased with the increase in animal-plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2-4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2-4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2-4. Faecal energy loss was significantly reduced with the increase in the animal-plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal-plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2-4. Together, our results suggest that the optimum animal-plant protein ratio in extruded and expanded diets is around 3:1.
Resumo:
In previous growth experiments with carnivorous southern catfish (Silurus meridionalis), the non-fecal energy lose was positively related to dietary. carbohydrate level. To test whether metabolic energy expenditure accounts for such energy loss, an experiment was performed with southern catfish juveniles (33.2-71.9 g) to study the effect of dietary carbohydrate level on fasting metabolic rate and specific dynamic action (SDA) at 27.5 degreesC. The fasting metabolic rate in this catfish was increased with dietary carbohydrate level, and the specific dynamic action (SDA) coefficient (energy expended on SDA as percent of assimilated energy) was not affected by dietary carbohydrate level. The results suggest that in southern catfish, carbohydrate overfeeding increases metabolic rate to oxidize unwanted assimilated carbohydrate. A discussion on the poor capacity of intermediate metabolism for adapting dietary carbohydrate in carnivorous fish and its possible relationship with facultative component of SDA was also documented in this paper. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A growth trial was conducted at 30 degrees C to investigate the effect of body size on growth and energy budget of Nile tilapia. The average initial body weights of the four size groups tested were 9.3, 34.1, 80.3 and 172.4 g, respectively. Fish were fed to satiation twice a day with a diet containing 35.6% crude protein. Food consumption (C-max: kJ/day) increased with body size (W: g) according to the relationship: Ln C-max = 1.45 + 0.42 LnW. The final body contents of dry matter, crude protein and ash per unit body weight increased with increasing body size while contents of fat and energy were independent of body size. Specific growth rates of wet weight, dry weight, protein and energy decreased as the fish increased in size. Feed efficiencies in wet weigh, dry weight and crude protein decreased with increasing body size, while that of energy remained unchanged. The proportions of energy intake allocated to the various components (faecal energy, excretory energy, heat production and recovered energy) of the energy budget were not significantly affected by body size, and the average budget was: 100IE-18.5(+/- 1.33)FE + 5.9 (+/- 3.09)(ZE + UE) + 49.3(+/- 3.77)HE + 26.3(+/- 6.23)RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. It is suggested that the decrease in growth rate in larger fish is mainly due to the decrease in relative food intake. (C) 1997 Elsevier Science B.V.
Resumo:
Nile tilapia weighing 8.29-11.02 g were fed a practical diet at seven ration levels (starvation, 0.5, 1, 2, 3, 4% body weight per day and satiation) twice a day at 30 degrees C. Feed consumption, apparent digestibility, nitrogenous excretion and growth were determined directly, and heat production was calculated by difference of energy budget. The relationship between specific growth rate in wet weight (SGR(w), percentage per day) and ration size (RL, percentage per day) was a decelerating curve described as SGR(w) = 2.98 (1 - e(-0.61(RL-0.43))). The apparent digestibility coefficients for dry matter and protein showed a decreasing pattern with increasing ration while the apparent digestibility coefficient of energy was not significantly affected by ration size. The proportion of gross energy intake lost in nitrogenous excretion tended to decrease with increasing ration. Feed efficiency was highest, and the proportion of gross energy intake channelled to heat production was lowest, at an intermediate ration level (2% per day). The energy budget at the satiation level was: 100IE = 16.9FE + 1.2(ZE + UE) + 62.3HE + 19.6RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. (C) 1997 Elsevier Science B.V.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.
Resumo:
Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.
Resumo:
Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In recent years, bivalve feces and powdered algae have been used as the food sources of holothurians in China. In this study, growth and energy budget for sea cucumber Apostichopus japonicus (Selenka) with initial wet body,veights of 32.5 1.0 g (mean +/- SE, n=45) when fed with five different granule diets containing dried bivalve feces and/or powdered algae in water temperature 13.2-19.8 degrees C and salinity 30-32ppt were quantified in order to investigate how diets influence growth and energy distribution and to find out the proper diet for land-based intensive culture of this species. Results showed that diets affected the food ingestion, feces production, food conversion efficiency and apparent digestive ratios, hence the growth and energy budget. Sea cucumbers fed with dried feces of bivalve showed poorer energy absorption, assimilation and growth than individuals fed with other four diets; this could be because feces-drying process removed much of the benefits. Dried bivalve feces alone, therefore, were not a suitable diet for sea cucumbers in intensive cultivation. The mixed diets of feces and powered algae showed promising results for cultivation of sub-adult Apostichopus japonicus, while animals fed with powdered algae alone, could not obtain the best growth. According to SGR of tested animals, a formula of 75% feces and 25% powdered algae is the best diet for culture of this species. Extruded diets were used in the present experiment to overcome shortcomings of the traditional powdered feeds, however, it seems a conflict exists between drying bivalve feces to form extruded diets and feeding sea cucumbers with fresh feces which contain beneficial bacteria. Compared with other echinoderms, in holothurians the energy deposited in growth is lower and the energy loss in feces accounts for the majority of the ingested energy. Such detailed information could be helpful in further development of more appropriate diets for culture of holothurians. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
By comparing the dynamic responses of saturated soil to Biot's and Yamamoto's models, the properties of the two models have be pointed out. First of all, an analysis has been made for energy loss of each model from the basic equations. Then the damping of elastic waves in coarse sand and fine sand with loading frequency and soil's parameters have been calculated and the representation of viscous friction and Coulomb friction in the two models has been concluded. Finally, the variations of loading wave damping and stress phase angles with water depth and soil's parameters have been obtained as loading waves range in ocean waves.
Resumo:
Liu Qingquan, Singh V.P
Resumo:
The density distribution of inhomogeneous dense deuterium-tritium plasmas in laser fusion is revealed by the energy loss of fast protons going through the plasma. In our simulation of a plasma density diagnostics, the fast protons used for the diagnostics may be generated in the laser-plasma interaction. Dividing a two-dimensional area into grids and knowing the initial and final energies of the protons, we can obtain a large linear and ill-posed equation set. for the densities of all grids, which is solved with the Tikhonov regularization method. We find that the accuracy of the set plan with four proton sources is better than those of the set plans with less than four proton sources. Also we have done the density reconstruction especially. for four proton sources with and without assuming circularly symmetrical density distribution, and find that the accuracy is better for the reconstruction assuming circular symmetry. The error is about 9% when no noise is added to the final energy for the reconstruction of four proton sources assuming circular symmetry. The accuracies for different random noises to final proton energies with four proton sources are also calculated.