20 resultados para Project 2007-001-EP : Interoperable Standards Development
Resumo:
With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.
Resumo:
With the development of both seismic theory and computer technology, numerical modeling technology of seismic wave has achieved great advancement during the past half century. The current methods under development include finite differentiation method (FDM), finite element method (FEM), pseudospectral method (PSM), integral equation method (IEM) and spectral element method (SEM). They exert their very important roles in every corner of seismology and seismic prospecting. Large quantity of researches towards spectral element method in the end of last century bring this method to a new era, which results in perfect solution of many difficult problems. However, parts of posterior works such as seismic migration and inversion which base on spectral element method have never been studied widely at least up to the present whereas are of importance to seismic imaging and seismic wave propagation. Based on previous work, this paper uses spectral element method to investigate the characteristics and laws of the seismic wave propagation in isotropic and anisotropic media. By thoroughly studying this high-accuracy method, we implement a kind of reverse-time pre- and post-stack migration based on SEM. In order to verify the validity of the SEM method, we have simulated the propagation of seismic wave in several different models. The simulation results show that: (1) spectral element method can be used to model any complex models and the computational results are comparable with the expected results and the analytic results; (2) the optimum accuracy can be achieved when the rank is between 4 and 9. When it is below 4, the dispersion may occur; and when it is above 9, the time step-length will be changed accordingly with the reducing space step-length in order to keep the computation stability. This will exponentially increase the computation time and at the same time the memory even if simulating the same media. This paper also applies explosive reflection surface imaging technology, time constancy principle of wave-filed extrapolation and least travetime raytracing technology of surface source to SEM pre- and post-stack migration of isotropic and anisotropic media. All imaging results derived by the above methods agree well with the real geological models and the position of interface and inflexions can also return to their right location well. This indicates that the method proposed in this paper is a kind of technology with high accuracy and robust stability. It can serve as an alternative method in real seismic data processing. All these work can boost the development of high-accuracy seismic imaging, and therefore have significant inference value.
Resumo:
Children’s understanding of deontic rules and theory of mind (ToM) were the two research domains for children’s social cognition. It was significant for understanding children’s social cognition to combine the researches in the two domains. Children at 3, 5 and 7years were required to answer three questions according to the stories which happened in children’s familiar context. The three questions were designed to address the three problems:⑴Development of 3-7-Year-old children’s understanding about how the deontic rules were enacted or changed.⑵ Development of 3-7-Year-old children’s understanding about that the deontic rules and the actor’s mental states could impact on his behaviors.⑶ Development of 3-7-Year-old children’s capacity to integrate the deontic rules and mental state to evaluate the actor’s behavior. The results showed that: ① The 3-7-Year-old children had known that deontic rules were established by the authority’s speech act. But there were still some irrelevant factors which influenced the children’s judgments, such as the authority’s desire. ② The children gradually recognized the relationship between actors should do something and they will do the same thing. 3-year-old children could recognize such relationship in a way, but their predictions were usually influenced by some irrelevant factors. The children at 5 and 7 years old understood this relationship more steady. ③ In deontic context, more and more children predicted the actors’ behaviors according to the actors’ mental states as they grown up. The ratio that the 3-7-Year-old children predicted the actors’ behavior according to their false belief about the deontic rules was smaller in deontic context compared with the children’s performance in traditional false belief task. This maybe indicated that the deontic context influenced the children’s inference stronger than the physical context. ④ When they could get the actors’ desires and the deontic rules, all the children could predict the actors’ behaviors according to their desires, but not the deontic rules. It meant that all the children could understand that the actors’ desire mediated between the deontic rules and their behaviors. But when the actors wanted to transgress the deontic rules, all the children’s predications became less accurate. ⑤ When they assigned criticism, more and more children could discriminate different behaviors as a result of diverse mental states although they all transgressed the deontic rules. But the most part of children overweighed the deontic rules but overlooked the actors’ mental state about the deontic rules; their criticism to behaviors which transgressed the deontic rules just differ in quantity according to diverse mental states, that is: if the actors known the rules or want to transgress the rules, then punished more, and if the actors didn’t know the rules or transgress the rules accidentally, then punished a little.
New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)
Resumo:
Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.