56 resultados para Predisposição radical
Resumo:
The catalytic mechanism for the oxidation of primary alcohols catalyzed by the two functional models of galactose oxidase (GOase), M-II L (M = Cu, Zn; L = N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)1-2-diiminoquinone)), has been studied by use of the density functional method B3LYP The catalytic cycle of Cu- and Zn-catalysts consists of two parts, namely, substrate oxidation (primary alcohol oxidation) and O-2 reduction (catalyst regeneration). The catalytic mechanisms have been studied for the two reaction pathways (route 1 and route 2). The calculations indicate that the hydrogen atom transfer within the substrate oxidation part is the rate-determining step for both catalysts, in agreement with the experimental observation.
Resumo:
Ionic liquid monomer 1-vinyl-3-ethylimidazolium bromide (ViEtIM(+)Br(-)) was first used to copolymerize with acrylonitrile (AN) successfully under various conditions. This was achieved with azobisisobutyronitrile as the initiator and dimethyl sulfoxide as the solvent. The kinetics of this copolymerization were studied. The values of the monomer apparent reactivity ratios were calculated by the Kelen-Tudos method. The apparent reactivity ratios of ViEtIM(+)Br(-) (r(ViEtIM+Br-)) and AN (r(AN)) were similar at polymerization conversions of less than 10%, (r(AN) = 0.954, r(ViEtIM+Br-) = 0.976). The copolymers were obtained with high molecular weights and high hydrophilicides. The copolymers were characterized by H-1-NMR, differential scanning calorimetry, and thermogravimetric analysis. These copolymers may be potentially useful in the preparation of precursor fibers and carbon fibers.
Resumo:
In the reactive extrusion process for polymerization, the chemical calorific effect has a great influence on the temperature. In order to quantitatively analyze the polymerization trend and optimize the processing conditions, the phenomena of the chemical calorific effect during reactive extrusion processes for free radical polymerization were analyzed. Numerical computation expressions of the heat of chemical reaction and the reactive calorific intensity were deduced, and then a numerical simulation of the reactive extrusion process for the polymerization of n-butyl methacrylate was carried out. The evolutions of the heat of chemical reaction and the reactive calorific intensity along the! axial direction of the extruder are presented, on the basis of which reactive processing conditions can be optimized.
Resumo:
The gel effect in the reactive extrusion process for free radical polymerization in a closely intermeshing co-rotating twin screw extruder was investigated. First the reaction kinetic model was constructed mainly on the basis of entanglement theory. Next, numerical calculation expressions for the initiator and monomer concentrations, monomer conversion, average molecular weight and apparent viscosity were deduced. Finally, the evolution of the above variables were shown and discussed for the example of butyl methacrylate. The simulated results of the monomer conversion are in good agreement with experimental results.
Resumo:
A new initiator for atom transfer radical polymerization (ATRP), (Cl-2 HCCOO)(3) -C-6 H-3, (TrDCAP),has been designed and successfully synthesized. ATRP of styrene was carried out by using TrDCAP as hexafunctional initiator and the CuCl/bpy catalyst at 130 degrees C in 30% THF via core-first strategy. The Arm-6 PS-AAP was synthesized by etherealization of Arm-6 PS and 4-(4'-methoxyphenylazomethine) phenol (AAP). The initiator and the architectures of the Arm-6 PS were confirmed by H-1-NMR, FT-IR, UV-Vis and GPC.
Resumo:
A new vinyl acyl azide monomer, 4-(azidocarbonyl) phenyl methacrylate, has been synthesized and characterized by NMR and FTIR spectroscopy. The thermal stability of the new monomer has been investigated with FTIR and thermal gravimetry/differential thermal analysis (TG/DTA), and the monomer has been demonstrated to be stable below 50 degrees C in the solid state. The copolymerizations of the new monomer with methyl acrylate have been carried out at room temperature under Co-60 gamma-ray irradiation in the presence of benzyl 1-H-imidazole-1-carbodithioate. The results show that the polymerizations bear all the characteristics of controlled/living free-radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow (< 1.20), and a linear relationship existing between In([M](0)/[M]) and the polymerization time. The data from H-1 NMR and FTIR confirm that no change in the acyl azide groups has occurred in the polymerization process and that acyl azide copolymers have been obtained. The thermal stability of the polymers has also been investigated with TG/DTA and FTIR.
Resumo:
The reactive extrusion for polymerization is an integrated polymer processing technology. A new semi-implicit iterative algorithm was proposed to deal with the complicated relationships among the chemical reaction, the macromolecular structure and the chemorheological property. Then the numerical computation expressions of the average molecular weight, the monomer conversion, and the initiator concentration were deduced, and the computer simulation of the reactive extrusion process for free radical polymerization was carried out, on basis of which reactive processing conditions can be optimized.
Resumo:
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new there exists E-shaped amphiphilic block copolymer, (PMMA)(2)-PEO-(PS)(2)-PEO-(PMMA)(2) [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso-2,3-dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)(2)-PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm-4 amphiphilic block copolymer, (HO-PEO)(2)-PS2, was esterified with 2,2-dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the there exists E-shaped amphiphilic block copolymer.
Resumo:
The free radical grafting of polyethylene with vinyl monomers by reactive extrusion was studied numerically. Numerical computation expressions of key variables, such as the concentrations of the initiator and polymer, grafting degree, average molecular weight and apparent viscosity, were deduced. The evolutions of the above variables were predicted by means of an uncoupled semi-implicit iterative algorithm. The monomer conversion monotonically increases with decreasing throughput or increasing initial initiator concentration; with increasing barrel temperature, the monomer conversion first increases then decreases. The simulated results are nearly in good agreement with the experimental results.
Resumo:
Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
Atom transfer radical polymerization has been used to successfully synthesize polybutadiene. This was achieved by using MoO2Cl2/triphenyl phosphine as the catalyst and the various organic halide compounds such as methyl-2-chloropropionate, CCl4, 1,4-dichloromethyl benzene, I-phenylethyl chloride, and benzyl chloride as initiators. The monomer conversion increased up to 50% with polymerization time. The polydispersity indices of the polymers were as high as above 1.5. However, the polymerizations were controlled and the polydispersity indices of the polymers were less than 1.5 throughout the polymerization in reverse atom transfer radical polymerization. The chemical structure of the polymer obtained was characterized by (HNMR)-H-1 and FTIR. The valency states of molybdenum in this reactive system were detected by UV-vis spectra.
Resumo:
In this paper, we presented a novel covalent bonding process between two quartz wafers at 300 degrees C. High-quality wafer bonding was formed by the hydroxylization, aminosilylation and atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA), respectively, on quartz wafer surfaces, followed by close contact of the GMA functional wafer and the aminosilylation wafer, the epoxy group opening ring reaction was catalyzed by the amino and solidified to form the covalent bonding of the quartz wafers. The shear force between two wafers in all bonding samples was higher than 1.5 MPa. Microfluidic chips bonded by the above procedures had high transparency and the present procedure avoided the adhesive to block or flow into the channel.
Resumo:
Poly( ethylene oxide)-b-poly(N, N-dimethylacrylamide) (PEO-b-PDMA) was synthesized by successive atom transfer radical polymerization (ATRP) of N, N-dimethylacrylamide (DMA) monomer using PEO-Br macro initiators as initiator, CuBr and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetra decane (Me-6[14] aneN(4)) as catalyst and ligand. PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide. GPC and H-1 NMR studies show that the plot of ln([DMA](0)/[ DMA]) against the reaction time is linear, and the molecular weight of the resulting PDMA increased linearly with the conversion. Within 3 h, the polymerization can reach almost 60% of conversion. PEO-b-PDMA copolymer with low polydispersity index (M-w/M-n approximate to 1.1) is obtained. Self-assembly of PEO-b-PDMA in selective solvents is also studied. It could self-assemble into micelles in methanol/acetone (1/10, v/v) solution. TEM analyses of the PEO-b-PDMA micelles with narrow size distribution revealed that their size and shape depend much on the copolymer composition.
Resumo:
alpha-Diimine nickel catalyst hearing two allyl groups [ArN=C](2)C10H6NiBr2 (Ar = 4-allyl-2,6-(i-Pr)(2)C6H2)] (Cat-I) has been synthesized and characterized. The corresponding polymer-incorporated nickel catalysts PC and the SiO2-supported shell-core structure catalyst SC-1 were obtained by the co-polymerization of the olefin groups of Cat-1 with styrene in the presence of a radical initiator. Radical co-polymerizations with styrene in Solution were investigated in detail, and the compositions and molecular weight of the copolymers were determined. All three types of catalysts (Cat-1, PC and SC-1) have been investigated for ethylene polymerization. These catalysts were found to exhibit high activity in the presence of modified methylaluminoxane (MMAO) as a co-catalyst. Among them, the polymer-incorporated PC and SiO2 shell-core catalyst SC-1 displayed very high activity (similar to2.62 and similar to1.11 kg (mmol Ni)(-1) h(-1), respectively) with product molecular weights (M,) in the range 26 x 10(4) to 47 x 10(4) under 0.1 MPa ethylene pressure. The particle morphology of polyethylene produced by the shell-core structure catalyst SC-1 was improved.