22 resultados para Post-meiotic transcriptional activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prophenoloxidase (proPO) is a conserved copper-containing enzyme that plays important roles in immune response of crustaceans and insects. In the present study, the full-length cDNA of a prophenoloxidase (designated EsproPO) was cloned from haemocytes of Chinese mitten crab Eriocheir sinensis by expressed sequence tag (EST) and PCR techniques. The isolated 3549 bp full-length cDNA of EsproPO contained a 2040 bp open reading frame (ORF) encoding a putative proPO protein of 679 amino acids, a 5'-untranslated region (UTR) of 68 bp, and a long 3'-UTR of 1441 bp. Two putative copper-binding sites, a proteolytic activation site, and a complement-like motif (GCGWPQHM) were identified in the deduced amino acid sequence of EsproPO. Homology analysis revealed that EsproPO was highly similar to other proPOs from crustaceans with identities from 52% to 68%. The conserved domains and motifs, and higher similarity with other proPOs suggested that EsproPO was a member of the proPO family. The mRNA expression of EsproPO and PO specific activities in the tissues of hepatopancreas, gill, gonad, muscle, heart, eye and haemocytes were measured by quantitative real-time PCR and colorimetric assay, respectively. The mRNA transcripts of EsproPO and PO specific activities could be detected in all the examined tissues with the highest level both in hepatopancreas. Three peaks of EsproPO mRNA expression were recorded at 2 h, 12 h and 48 h in haemocytes of Chinese mitten crab post Vibrio anguillarum challenge, which was consistent with the temporal profile of PO specific activity. The mRNA expression pattern and the activity fluctuation of EsproPO post V. anguillarum stimulation indicated that it was potentially involved in the acute response against invading bacteria in Chinese mitten crab. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteinase inhibitors (SPIs) play important roles in host physiological and immunological processes in all multicellular organisms. A novel Kazal-type SPI gene was cloned from the Zhikong scallop Chlamys farreri (designated as CfKZSPI) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfKZSPI was of 1788 nucleotides with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) encoding a polypeptide of 509 amino acids with a putative signal peptide of 22 amino acids. The deduced amino acid sequence of CfKZSPI contained 12 tandem Kazal domains with high similarity to other Kazal-type SPIs. The temporal expression of CfKZSPI in hemocytes after Vibrio anguillorum challenge was recorded by quantitative real-time RT-PCR. The relative mRNA expression level of CfKZSPI was up-regulated and reached 43.6-fold at 3 h post-challenge. After a decrease at 6 h, the expression Level increased again and reached 207.8-fold at 12 h post-challenge. The 12th Kazal domain of CfKZSPI was recombined into pET-32a(+) and expressed in Escherichia coli Rosetta-gami (DE3) to investigate its inhibitory activity. The purified recombinant protein (rCf KZSPI-1 2) showed significant inhibitory activity against trypsin but no activity against thrombin. When the molar ratio of inhibitor to trypsin reached 1:1, almost 90% of the enzyme activity could be inhibited, which suggested that one molecule of rCfKZSPI-12 was able to inhibit one molecule of trypsin. Kinetics analysis with Dixon plot showed that the inhibition constant (K-i) of rCfKZSPI-12 to trypsin was 173 nmol L-1. These results indicated that CfKZSPI was a novel Kazal-type SPI with significant inhibitory activity against trypsin, and was suspected to be involved in scallop immune response. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. The first mollusk big defensin (designated AiBD) cDNA was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The scallop AiBD consisted of 531 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. The high similarity of AiBD deduced amino acid sequence with big defensin from Tachypleus tridentatus and Branchiostoma belcheri tsingtaunese indicated that AiBD should be a member of big defensin family. The expression of AiBD in various tissues was measured by using Northern blotting analysis. mRNA transcripts of AiBD could be detected in haemocytes of unchallenged scallops. The temporal expression of AiBD in haemolymph after Vibrio anguilarum challenge was recorded by quantitative real time PCR. The relative expression level of AiBD in haemolymph was up-regulated evenly in the first 8 h, followed by a drastic increase, and increased 131.1-fold at 32 h post-injection. These results indicated that AiBD could be induced by bacterial challenge, and it should participate in the immune responses of A. irradians. Biological activity assay revealed that recombinant AiBD could inhibit the growth of both Gram-positive and Gram-negative bacteria, and also showed strong fungicidal activity towards the expression host. Recombinant expression of AiBD made it possible to further characterize its functions involved in immune responses, and also provided a potential therapeutic agent for disease control in aquaculture. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptococcus iniae is a severe aquaculture pathogen that can also infect humans and animal. A putative secretory antigen, Slat 0, was identified from a pathogenic S. iniae strain by in vivo-induced antigen technology. Using turbot as an animal model, the immunoprotective effect of Sia10 was examined as a DNA vaccine in the form of plasmid pSia10, which expresses sia10 under the cytomegalovirus immediate-early promoter. In fish vaccinated with pSia10, transcription of sia10 was detected in muscle, liver, spleen, and kidney at 7, 14, 21, 28, 35, 42, and 49 days post-vaccination. In addition, production of Sia10 protein was also detected in the muscle tissues of pSia10-vaccinated fish. Fish vaccinated with pSia10 exhibited a relative percent survival (RPS) of 73.9% and 92.3%, respectively, when challenged with high and low doses (producing a cumulative mortality of 92% and 52%, respectively, in the control groups) of S. iniae. Immunological and transcriptional analyses showed that vaccination with pSia10(i) induced much stronger chemiluminescence response and significantly higher levels of nitric oxide production and acid phosphatase activity in head kidney macrophages; (ii) caused the production of specific serum antibodies, which afforded apparent immunoprotection when transferred passively into naive fish; and (iii) upregulated the expression of the genes encoding proteins that are possibly involved in both innate and adaptive immune responses. Taken together, these results indicated that pSia10 is an effective vaccine candidate and may be used in the control of S. iniae infection in aquaculture. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new post-grafting process, consisting of two steps of substrate preparation and sol - gel post-grafting, has been developed to prepare titanium-doped mesoporous SBA-15 material with a double-layered structure and locally concentrated titanium content at the inner pore surface. With this novel technique, the single phased and originally ordered mesostructures can be well conserved; in the conventional direct synthesis they can be partially damaged when the frameworks are doped with high content heteroatoms. Titanium species exist in an isolated, tetrahedral structure and are localized at the pore surface; this is beneficial to both reactant access and product release. Characterization with XRD, N-2 adsorption/desorption isotherms, HREM/ EDS, ICP, UV - Vis, and the newly developed UV - Raman spectroscopy confirm these results. Preliminary catalytic tests with the selective epoxidation of cyclohexene show good catalytic activity. Among them, sample TiSBA-15-10 with a Si : Ti molar ratio of 10 shows a TON value of 75 and a highest product ( epoxide) yield of 55%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper nanoparticles were deposited onto mesoporous SBA-15 support via two different routes: post-grafting method and incipient wet impregnation method. Both XRD and TEM reveal that the post-grafting can make Cu particles very small in size and highly dispersed into channels of SBA-15, while the impregnation method mainly forms large Cu particles on the external surface of SBA-15. TPR experiments show that CuO species formed by the post-grafting method is more reducible than that prepared by the impregnation method. The catalytic activity tests for CO oxidation manifests that the sample prepared by the post-grafting method has a much higher activity than that prepared by the impregnation method, with a lowering of 50 degrees C for T-50, showing a strong dependence of catalytic activity on the size and dispersion of Cu particles. Besides the preparation procedure, other factors including calcination temperature, reduction treatment, copper loading as well as the feed composition, have an important effect on the catalytic activity. The best performance was obtained when the catalyst was calcined at 500 degrees C and reduced at 550 degrees C. The calcination and reduction treatment at high temperature have been found to be necessary to completely remove the organic residue and to generate active metallic copper particles. (c) 2005 Elsevier B.V. All rights reserved.