110 resultados para Pore forming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offshore pipelines are always trenched into seabed to reduce wave-induced forces and thereby to enhance their stability. The trenches are generally backfilled either by in-site sediments or by depositing selected backfill materials over the pipeline from bottom-dump barge. The actual waves in shallow water zone are always characterized as nonlinear. The proper evaluation of the wave-induced pressures upon pipeline is important for coastal geotechnical engineers. However, most previous investigations of the wave–seabed–pipe interaction problem have been concerned only with a single sediment layer and linear wave loading. In this paper, based on Biot’s consolidation theory, a two-dimensional finite element model is developed to investigate non-linear wave induced pore pressures around trenched pipeline. The influences of the permeability of backfill soil and the geometry profiles of trenches upon soil responses around pipeline are studied respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that several morphospecies of Microcystis, such as Microcystis aeruginosa (Kutzing) Lemmermann and Microcystis viridis (A. Brown) Lemmermann can produce hepatotoxic microcystins. However, previous studies gave contradictory conclusions about microcystin production of Microcystis wesenbergii (Komarek) Komarek. In the present study, ten Microcystis morphospecies were identified in waterblooms of seven Chinese waterbodies, and Microcystis wesenbergii was shown as the dominant species in these waters. More than 250 single colonies of M. wesenbergii were chosen, under morphological identification, to examine whether M. wesenbergii produce hepatotoxic microcystin by using multiplex PCR for molecular detection of a region (mcyA) of microcystin synthesis genes, and chemical analyses of microcystin content by ELISA and HPLC for 21 isolated strains of M. wesenbergii from these waters were also performed. Both molecular and chemical methods demonstrated that M. wesenbergii from Chinese waters did not produce microcystin. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When tobacco BY-2 cells were treated with 60 mu g/mL MC-RR for 5 d, time-dependent effects of MC-RR on the cells were observed. Morphological changes such as abnormal elongation, evident chromatin condensation and margination, fragmentation of nucleus and formation of apoptotic-like bodies suggest that 60 mu g/mL MC-RR induced rapid apoptosis in tobacco BY-2 cells. Moreover, there was a significant and rapid increase of ROS level before the loss of mitochondrial membrane potential (Delta Psi(m)) and the onset of cell apoptosis. Ascorbic acid (AsA), a major primary antioxidant, prevented the increase of ROS generation, blocked the decrease in Delta Psi(m) and subsequent cell apoptosis, indicating a critical role of ROS in serving as an important signaling molecule by causing a reduction of Delta Psi(m) and MC-RR-induced tobacco BY-2 cell apoptosis. In addition, a specific mitochondrial permeability transition pores (PTP) inhibitor, cyclosporin A (CsA), significantly blocked the MC-RR-induced ROS formation, loss of Delta Psi(m), as well as cell apoptosis when the cells were MC-RR stressed for 3 d, suggesting that PTP is involved in 60 mu g/mL MC-RR-induced tobacco cell apoptosis signalling process. Thus, we concluded that the mechanism of MC-RR-induced apoptosis signalling pathways in tobacco BY-2 cells involves not only the excess generation of ROS and oxidative stress, but also the opening of PTP inducing loss of mitochondrial membrane potential. (C) 2007 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two strains of Raphidiopsis Fritsch et Rich were isolated from a fishpond in Wuhan city, China and rendered axenic, and characterized by a combination of morphological, physiological, biochemical and genetic methods. Morphologically the strains were identified as Raphidiopsis mediterranea Skuja (straight trichomes) and R. curvata Fritsch et Rich (coiled trichomes). These two strains demonstrated slight differences in optimal temperature range and GC content, while sharing some common characteristics including inability to grow hetertrophically, similar salinity tolerance (up to 0.78%) and an identical fatty acid composition. Cyanotoxins were not found in the strain of R. mediterranea, however, the strain of R. curvata contained both deoxycylindrospermopsin and cylindrospermopsin. Phylogenetic affiliations inferred from 16S rRNA gene sequences demonstrated that both Raphidiopsis strains clustered with Cylindrospermopsis, demonstrating their phylogenetic ties to Nostocaceae. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten common species of Microcystis, based on the examination of water samples from the Dianchi Lake, Yunnan, China, were morphologically described, and their taxonomy was also discussed. They are Microcystis aeruginosa, M botrys, M firma, M flos-aquae, M ichthyoblabe, M novacekii, M pseudofilamentosa, M smithii, M viridis and M wesenbergii. Taxonomic status of other Microcystis species reported in China was also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular ( 4 strains) and colonial ( 4 strains) Microcystis strains to phosphorus ( P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l - 1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P- starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P- limited conditions, the oxygen evolution rate, Fv/ Fm, and ETRmax were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyphasic approach was used to clarify the taxonomy of the water-bloom-forming oscillatorioid cyanobacteria. Seventy-five strains of oscillatorioid cyanobacteria were characterized by 16S rDNA sequence analysis, DNA base composition, DNA-DNA hybridization, fatty acid composition, phycobilin pigment composition, complementary chromatic adaptation, morphological characters, growth temperature and salinity tolerance. Phylogenetic analysis based on 165 rDNA sequences divided the strains into six groups, all of which were clearly separated from the type species of the genus Oscillatoria, Oscillatoria princeps Gomont NIVA CYA 150. Therefore, these strains should be classified into genera other than Oscillatoria. Groups I-III were closely related to one another and groups IV-VI were distinct from one another and from groups I to III. Group I was further divided into two subgroups, group I-pc, which includes strains containing only phycocyanin (PC), and group I-pe, which includes strains containing large amounts of phycoerythrin (PE) in addition to PC. This phenotypic distinction was supported by DNA-DNA hybridization studies. Based on the properties examined herein and data from traditional, botanical taxonomic studies, the groups and subgroups were classified into single species and we propose either emended or new taxonomic descriptions for Planktothrix agardhii (type strain NIES 204(T)), Planktothrix rubescens (type strain CCAP 1459/22(T)) Planktothrix pseudagardhii sp. nov. (type strain T1-8-4(T)), Planktothrix mougeotii (type strain TR1-5(T)), Planktothricoides raciborskii gen. nov., comb. nov. (type strain NIES 207(T)), Tychonema bourrellyi (type strain CCAP 1459/11B(T)) and Limnothrix redekei (type strain NIVA CYA 277/1(T)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.