96 resultados para Polyvinyl chloride.
Resumo:
A new trimer from the reaction of ageratochromene [1] (6,7-dimethoxy-2,2-dimethyl-1-benzopyran) with anhydrous aluminum chloride was shown to be 3,4-dihydro-6,7-dimethoxy-2,2-dimethyl-3-(6',7'-dimethoxy-2',2'-di-methyl-2H-1-benzopyran-4'-yl)-4-(3" 4"-dihydro-6", 7"-dimethoxy-2",2"-dimethyl-2H-1-benzopyran-3"-yl)-2H-1-benzopyran. Its structure was confirmed by NMR (H-1, C-13, DEPT-135. COSY, HMBC, HSQC, TOCSY and NOESY), IR, mass spectra and elemental analysis. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
A poly(vinyl chloride)(PVC)-based membrane of 15-crown-5 exhibits a good response for lead(II) ions over a wide concentration range. The response time of the sensor is 30 s and the membrane can be used for more than four months without observing any divergence. The selectivity of the sensor is comparable with those reported for other such electrodes. It was possible to determine lead in polluted waters using this electrode assembly.
Resumo:
It is shown that near-Nernstian calibration slopes can be obtained with a Cu1.8Se electrode in a range of cupric ion buffers in spite of a high chloride content. Best results are obtained with the ligands ethylenediamine, glycine and histidine. The onset of cupric ion toxicity towards marine organisms falls within the pCu calibration range obtained with glycine, and the Cu1.8Se electrode could, therefore, be useful for monitoring cupric ion activity in bioassays in sea-water media.
Resumo:
Three novel of isomeric tetra-functional biphenyl acid chloride: 3,3',5,5'-biphenyl tetraacyl chloride (mm-BTEC), 2,2',4,4'-biphenyl tetraacyl chloride (om-BTEC), and 2,2',5,5'-biphenyl tetraacyl chloride (op-BTEC) were synthesized, and used as new monomers for the preparation of the thin film composite (TFC) reverse osmosis (RO) membranes through interfacial polymerization with m-phenylenediamine (MPDA). The results of membrane performance test showed that membranes prepared from om-BTEC and op-BTEC had higher flux at the expanse of rejection compared with membranes prepared from mm-BTEC.
Resumo:
The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.
Resumo:
BACKGROUND: 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP, H(2)A(2)) has been applied extensively to the extraction of rare earths. However, there are some limitations to its further utilization and the synergistic extraction of rare earths with mixtures of HEHEHP and another extractant has attracted much attention. Organic carboxylic acids are also a type of extractant employed for the extraction of rare earths, e.g. naphthenic acid has been widely used to separate yttrium from rare earths. Compared with naphthenic acid, sec-nonylphenoxy acetic acid (CA100, H2B2) has many advantages such as stable composition, low solubility, and strong acidity in the aqueous phase. In the present study, the extraction of rare earths with mixtures of HEHEHP and CA100 has been investigated. The separation of the rare earth elements is also studied.
Resumo:
The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.
Resumo:
The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.
Resumo:
Most nanofiltration (NF) membranes are composite and have a polyamide thin film prepared by interfacial polymerization. Their performances mainly correlate the structure of the thin film and monomers used for its preparation. In this work, a novel thin-film composite (TFC) nanofiltration membrane was successfully prepared from 3,3',5,5'-biphenyl tetraacyl chloride (mm-BTEC) and piperazine (PIP) through interfacial polymerization. Attenuated reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS) were used to characterize the chemical composition of the membrane surface. The membrane performance was optimized by studying preparation parameters including monomer concentration, reaction time, and pH of aqueous phase.