70 resultados para Polynomial Invariants
Resumo:
The Reynolds-averaged Navier-Stokes equations for describing the turbulent flow in a straight square duct are formulated with two different turbulence models. The governing equations are then expanded as a multi-deck structure in a plane perpendicular to the streamwise direction, with each deck characterized by its dominant physical forces as commonly carried out in analytical work using triple-deck expansion. The resulting equations are numerically integrated using higher polynomial (H-P) finite element technique for each cross-sectional plane to be followed by finite difference representation in the streamwise direction until a fully developed state is reached. The computed results using the two different turbulence models show fair agreement with each other, and concur with the vast body of available experimental data. There is also general agreement between our results and the recent numerical works anisotropic k-epsilon turbulence model.
Resumo:
Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.
Resumo:
The T. E. wave in cylindrical wavegulde filled with inhomogeneous plasma immersed in the external uniform longitudinal magnetic field is investigated. The analytic solution expressed in polynomial formed by cutting the confluent hypergeometric function is obtained. Furthermore the eigenfrequency of T. E. wave is obtained.
Resumo:
A new method is presented here to analyse the Peierls-Nabarro model of an edge dislocation in a rectangular plate. The analysis is based on the superposition scheme and series expansions of complex potentials. The stress field and dislocation density field on the slip plane can be expressed as the first and the second Chebyshev polynomial series respectively. Two sets of governing equations are obtained on the slip plane and outer boundary of the rectangular plate respectively. Three numerical methods are used to solve the governing equations.
Resumo:
Topography of a granite surface has an effect on the vertical positioning of a wafer stage in a lithographic tool, when the wafer stage moves on the granite. The inaccurate measurement of the topography results in a bad leveling and focusing performance. In this paper, an in situ method to measure the topography of a granite surface with high accuracy is present. In this method, a high-order polynomial is set up to express the topography of the granite surface. Two double-frequency laser interferometers are used to measure the tilts of the wafer stage in the X- and Y-directions. From the sampling tilts information, the coefficients of the high-order polynomial can be obtained by a special algorithm. Experiment results shows that the measurement reproducibility of the method is better than 10 nm. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
Resumo:
从德鲁德理论出发,对多元共蒸法镀制的非均匀膜的折射率分布与沉积速率的关系进行了探讨;然后利用计算机辅助模拟,对德鲁德分布非均匀光学薄膜,从单周期和多周期、正变和负变、完整周期和存在半周期几个方面对其光学特性进行了系统分析.研究发现:其透射率的极小值和周期数的关系遵从周期数的三次多项式衰减规律,不同规律的德鲁德分布非均匀膜可用来设计不同功能的滤光片.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio Bloch (initial body weight: 4.89 g) were fed for 8 weeks at 24.8-30.8 degrees C with nine isonitrogenous and isoenergetic diets. The control diet (F1) used white fishmeal (FM) as the sole protein source. In the other eight diets (F2-F9), 40.5-100% of FM protein was substituted by poultry by-product meal (PBM) at 8.5% increments. The specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio, protein retention efficiency and energy retention rate for fish fed PBM diets (F2-F9) were all higher, but not always significantly, than those for fish fed F1. All apparent digestibility coefficients for fish fed PBM diets were lower than those for fish fed F1. Fish fed F1 had a significantly higher hepatosomatic index value than fish fed PBM diets (P < 0.05). No significant (P > 0.05) effect of diet was found in whole-body moisture and fat content. Whole-body protein and energy content for fish fed PBM diets were slightly higher than that for fish fed F1. The optimal replacement level of FM by PBM was estimated by second-order polynomial regression to be 66.5% in protein.
Resumo:
Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A linear photodiode array spectrometer based, high resolution interrogation technique for fiber Bragg grating sensors is demonstrated. Spline interpolation and Polynomial Approximation Algorithm (PAA) are applied to the data points acquired by the spectrometer to improve the original PAA based interrogation method. Thereby fewer pixels are required to achieve the same resolution as original. Theoretical analysis indicates that if the FWHM of a FBG covers more than 3 pixels, the resolution of central wavelength shift will arrive at less than 1 pm. While the number of pixels increases to 6, the nominal resolution will decrease to 0.001 pm. Experimental result shows that Bragg wavelength resolution of similar to 1 pm is obtained for a FBG with FWHM of similar to 0.2 nm using a spectrometer with a pixel resolution of similar to 70 pm.
Resumo:
In this paper, we propose a new scheme for omnidirectional object-recognition in free space. The proposed scheme divides above problem into several onmidirectional object-recognition with different depression angles. An onmidirectional object-recognition system with oblique observation directions based on a new recognition theory-Biomimetic Pattern Recognition (BPR) is discussed in detail. Based on it, we can get the size of training samples in the onmidirectional object-recognition system in free space. Omnidirection ally cognitive tests were done on various kinds of animal models of rather similar shapes. For the total 8400 tests, the correct recognition rate is 99.89%. The rejection rate is 0.11% and on the condition of zero error rates. Experimental results are presented to show that the proposed approach outperforms three types of SVMs with either a three degree polynomial kernel or a radial basis function kernel.
Resumo:
Interpolation attack was presented by Jakobsen and Knudsen at FSE'97. Interpolation attack is effective against ciphers that have a certain algebraic structure like the PURE cipher which is a prototype cipher, but it is difficult to apply the attack to real-world ciphers. This difficulty is due to the difficulty of deriving a low degree polynomial relation between ciphertexts and plaintexts. In other words, it is difficult to evaluate the security against interpolation attack. This paper generalizes the interpolation attack. The generalization makes easier to evaluate the security against interpolation attack. We call the generalized interpolation attack linear sum attack. We present an algorithm that evaluates the security of byte-oriented ciphers against linear sum attack. Moreover, we show the relationship between linear sum attack and higher order differential attack. In addition, we show the security of CRYPTON, E2, and RIJNDAEL against linear sum attack using the algorithm.
Resumo:
This paper study generalized Serre problem proposed by Lin and Bose in multidimensional system theory context [Multidimens. Systems and Signal Process. 10 (1999) 379; Linear Algebra Appl. 338 (2001) 125]. This problem is stated as follows. Let F ∈ Al×m be a full row rank matrix, and d be the greatest common divisor of all the l × l minors of F. Assume that the reduced minors of F generate the unit ideal, where A = K[x 1,...,xn] is the polynomial ring in n variables x 1,...,xn over any coefficient field K. Then there exist matrices G ∈ Al×l and F1 ∈ A l×m such that F = GF1 with det G = d and F 1 is a ZLP matrix. We provide an elementary proof to this problem, and treat non-full rank case.