69 resultados para Phosphorus in the body
Resumo:
Forty-five male yaks (born April 2001) were studied to determine how seasonal changes on the Qinghai-Tibetan plateau affected BW and body composition. Thirty yaks were weighed monthly from birth to 26 mo of age to determine seasonal changes in BW. The remaining 15 yaks were allocated randomly to five groups (three yaks per group), designated for slaughter at 13, 15, 18, 22, and 25 mo to measure seasonal effects on body chemical composition. All yaks were grazed on the alpine-meadow grassland of the plateau without any supplementation. All BW and body composition data were calculated on an individual basis. Body weight and body composition data were both compared across seven growth periods spanning 2 yr and defined by season. From April (birth) to December 2001 of the first growing season, yak BW increased (P < 0.01); however, during the subsequent cold season (December 2001 to May 2002), BW decreased (P < 0.01). The second growing season ran from May 2002 (13 mo of age) to October 2002 (18 mo of age), and the second live weight-loss season ran from October 2002 until May 2003. The weight loss experienced by yaks during the first weight loss season was 25.64% of the total weight gain in the first growing season. The weight loss experienced by yaks during the second weight-loss season was 29.73% of the total weight gain in the second growing season. Energy retention in the second growing season was 291.07 MJ, 50.8% of which was consumed during the subsequent cold season. Energy accumulation in the summer (from May to July) and fall (from July to October) of the second growing season did not differ (5.01 and 6.30 MJ/kg of EBW gain, respectively; P = 0.63). The energy mobilized during the second winter (from October 2002 to February 2003) was 16.49 MJ/kg of EBW, and in the second spring (from February to May 2003), it was 9.06 MJ/kg of EBW. These data suggest that the decrease in grazing yak BW during the first cold season is much less than during the second cold season, and that the energy content per unit of BW mobilized is greater (P = 0.02) in winter than in spring. Results from this study demonstrate highly efficient compensatory growth in grazing yaks following the first weight loss period during the first cold season. This benefit could be exploited by herders to improve yak production. Yaks may have developed a type of self-protection mechanism to overcome the long cold seasons in the Qinghai-Tibetan plateau.
Resumo:
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
Resumo:
The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.
Resumo:
To determine the environmental factors influencing C, phytoplankton chlorophyll a (Ch1 a), field investigations 4 were conducted in three river-connected lakes (Dongting Lake, Poyang Lake and Shijiu Lake) of the Yangtze floodplain in 2004. Results showed that the average Chi a concentration in these lakes ranged from 2.98 to 3.65 mg m(-3). The major factors influencing Chl a in lentic and lotic regions were total phosphorus (TP) and water velocity (U), respectively. Multiple relationships including total nitrogen (log(10)TN) and water depth (log(10)Z) were established. Further analyses found that the absolute Chi a and slope of log(10)Chl a=f (log(10)TP) in the river-connected lakes were obviously lower than those in the river-isolated lakes. This suggests the river-lake connectivity can significantly modify relationship between TP and chlorophyll a concentration.
Resumo:
Ptychobarbus dipogon is an endemic fish in the Yarlung Tsangpo River, but its biology is poorly known. We sampled 582 specimens (total length, TL, between 70.6 and 593.0 mm) from April 2004 to August 2006 in the Lhasa River, Tibet. We estimated ages based on the counts of alternating opaque and translucent zones (annuli) in thin transverse sections of lapilli otoliths. Ages ranged from 1(+) to 23(+) years for males and 1(+) to 44(+) for females. The observed 44(+) years was the oldest reported for schizothoracine fishes. Females attained a larger size than males. The TL weight relationship was W=7.12 x 10(-6)TL(3.006) for combined sexes. The growth parameters fitted von Bertalanffy growth functions were L-infinity = 598.66 mm, k=0.0898 year(-1), t(0)=-0.7261 year and W-infinity = 1585.38 g for females and L-infinity = 494.23mm, k=0.1197 year(-1), t(0)=-0.7296 year and W-infinity = 904.88g for males. The longevities of 32.7 year for females and 24.3 year for males were similar to the observed ages. Using an empirical model we estimated the instantaneous rate of total mortality (Z) at 0.28 per year in the lower reaches. Z in the upper and middle stocks was close to the M because of unexploited or lightly exploited stock. Protracted longevity, slow growth, low natural mortality and large body size were typical characteristics of P. dipogon. The current declining trend of P. dipogon could be prevented by altering fishing regulations.
Resumo:
From June 2004 to December 2004, Lake Dianchi, which had large scale of cyanobacterial blooms was investigated in order to study P-fractionation in the suspended matter and the sediment. The investigation improves our understanding of phosphorus in Lake Dianchi and the relationship between phosphorus and cyanobacterial blooms. It contributes to the available literature on the behavior of P in hypertrophic lakes. The distribution of P-fractions in Lake Dianchi was not uniform from northwest to south, but was closely related to the trophic status of the whole lake. The concentrations of total phosphorus, labile P (NH4Cl-P), Organic P (NaOH-NRP) and loss on ignition in suspended matter were positively correlated with the strength of cyanobacterial blooms. Total phosphorus in suspended matter was relatively stable for almost half an year and closely related to Chl. a concentration. The main content of organic phosphorus is in the cyanobacterial blooms. The concentrations of phosphorus bound to metal oxides and carbonates (NaOH-SRP and HCl-P) in sediment were similar to NaOH-SRP and HCl-P in the corresponding suspended matter. The latter two forms of P in suspended matter were not affected by cyanobacterial blooms, indicating that the inorganic phosphorus is derived from the sediment after resuspension from the sediment due to wind and wave action. The contribution of the different P-fractions to TP in sediment and in suspended matter indicates that NH4Cl-P in the suspended matter is an important buffer for maintaining dissolved phosphorus in water.
Resumo:
Microcystin (MC) problem made more and more care about in China, intercellular MC (Int-MC) and cellular MC (Cel-MC) were important contents to reflect the producing-MC ability by cyanobacteria and by lakes. To study the correlations between Int-MC, Cel-MC concentration and biological and environmental factors, eight cyanobacterial blooming lakes were studied in the middle and lower reaches of the Yangtze River. Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR) were the primary toxin variants in our data. From the linear correlations between MC and environmental factors, cellular-YR had significant correlation with most of chemical factors except total nitrogen (TN) and the ratio of total nitrogen and total phosphorus (TN/TP), most intracellular MC analogues had significant correlations with total dissolved nitrogen (TDN), ammonium (NH4+), nitrite (NO2-), TP, total dissolved phosphorus (TDP), Microcystis. From the canonal correspondence analysis, Int-MC concentrations were closely related with the chemical and biological factors, such as TP, total organic carbon (TOC), chlorophyll a (Chl a), Microcystis biomass, et al. While Cel-MC contents, especially Cel-RR and Cel-LR, were closely related with light environmental in the lakes such as water depth and transparence.
Resumo:
Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 mu g MC- LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination.
Resumo:
An incubation experiment was performed on Potamogeton crispus (P. crispus) using sediment collected from Lake Tangxunhu in the center of China, in order to determine the effects of plant growth on Fe, Si, Cu, Zn, Mn, Mg, P, and Ca concentrations in the sediments and overlying waters. After 3 months of incubation, Ca, Mg, and Si concentrations in the water column were significantly lower, and P and Cu concentrations were significantly higher than in unplanted controls. The effect of P. crispus growth on sediment pore waters and water-extractable elements varied. Concentrations of Ca, Mg, Si, Fe, Cu, and Zn were significantly higher, and P was significantly lower, than in pore waters of the control. Water-extracted concentrations of Fe, Mg, and Si in the sediments were lower, and P was higher, than in the control. Presence of P. crispus generally enhanced concentration gradients of elements between pore waters and overlying waters but not for P. The growth of P. crispus was associated with an increase in water pH and formation of root plaques, resulting in complex effects on the sediment nutritional status.
Resumo:
A new species of Allocreadium, Allocreadium danjiangensis n. sp., is described from the intestine of several species of freshwater fish, including Abbottina rivularis (Basilewsky, 1855), Sarcocheilichthys nigripinnis nigripinns (Gunther, 1873), Gnathopogon argentatus (Sauvage et Dabry 1874), Opsariichthys uncirostris bidens (Gunther, 1873), and Erythroculter mongolicus mongolicus (Basilewsky, 1855) (Cyprinidae) from the Danjiangkou Reservoir in central China. The main morphological characters of the new species are as follows: vitelline follicles numerous, extending from the level of acetabulum to posterior extremity, distributed over both sides around the ceca; cirrus sac relatively large, developed, lying obliquely anterior to the acetabulum, extending from the level of the intestinal bifurcation to the central level of acetabulum, and overlapping left or right cecal; and ovary much smaller than testes, generally close to or even overlapping the anterior border of anterior testis. Observation by scanning electron microscopy shows only 2 kinds of tegumental formations, i.e., papillae and tubercles, instead of 3 types of tegumental formations, i.e., papillae, bosses, and minute sensor receptors observed on other species of the Allocreadiidae. The tegumental striations of the present species vary on the different parts of the body. In addition, a new structure, identified as the "groove" with a tonguelike tubercle, was observed on the inner wall of acetabulum.
Resumo:
A comparative study was conducted to reveal the differentiate effects of eight different filter media including gravel, zeolites, anthracite, shale, vermiculite, ceramic filter media, blast furnace steel slag and round ceramsite. The study mainly related to the eight different filter media's removal performances of organic matter, nitrogen and phosphorus in the vertical flow constructed wetland simulated system, which treating wastewater at hydraulic loading rate of 1000-2500 mm/d. The results indicated that the removal effects were closely related to the physical and chemical properties of medium materials. Anthracite-filled system had the highest removal rate for the total organic carbon (TOC), up to 70%, and the removal rates of other systems ranged from 20% to 30%. As for the five-day biochemical oxygen demand (BOD5), anthracite-filled and steel slag-filled systems had the highest removal rates, also up to 70%, as well as other systems all exceeded 50%. At the same time, for the total nitrogen (TN) and NH4(+)-N, the zeolites-filled and ceramic-filled systems had the best performances with the removal rates of more than 70%, the other way round, the removal rates of other systems were only about 20%. The distinguishable effects were also observed in removal performances of total phosphorus (TP) and total dissoluble phosphorus (TDP). The removal rates of TP and TDP in steel slag-filled systems were more than 90%, a much higher value, followed by that of the anthracite-filled system, more than 60%, but those of other systems being the less. Our study provided a potential mechanism to optimize the filter media design for the vertical flow constructed wetlands.
Resumo:
The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads, such as soluble reactive phosphorus (SRP) and total phosphorus (TP), as well as the main elements of sediment extracts in Dianchi Lake. Several strongly reducing substances in sediments, which mainly originated from anaerobic decomposition of primary producer residues, were responsible for the lower redox potential. In a range of -400 to 200 mV raising the redox potential of sediments decreased TP and SRP in interstitial water. Redox potentials exceeding 320 mV caused increases in TP, whereas SRP maintained a relatively constant minimum level. The concentrations of Al, Fe, Ca2+, Mg2+, K+, Na+ and S in interstitial water were also related to the redox potential of sediments, suggesting that the mechanism for redox potential to regulate the concentration of phosphorus in interstitial water was complex.
Resumo:
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular ( 4 strains) and colonial ( 4 strains) Microcystis strains to phosphorus ( P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l - 1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P- starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P- limited conditions, the oxygen evolution rate, Fv/ Fm, and ETRmax were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions.
Resumo:
Damming, and thus alteration of stream flow, promotes higher phytoplankton populations and encourages algal blooms (density > 10(6) cells L-1) in the Three Gorges Reservoir (TGR). Phytoplankton composition and biomass were studied in the Yangtze River from March 2004 to May 2005. 107 taxa were identified. Diatoms were the dominant group, followed by Chlorophyta and Cyanobacteria. In the Yangtze River, algal abundance varied from 3.13 x 10(3) to 3.83 x 10(6) cells L-1, and algal biomass was in the range of 0.06 to 659 mg C m(-3). Levels of nitrogen, phosphorus and silica did not show consistent longitudinal changes along the river and were not correlated with phytoplankton parameters. Phytoplankton abundance was negatively correlated with main channel discharge (Spearman r = -1.000, P < 0.01). Phytoplankton abundance and biomass in the Yangtze River are mainly determined by the hydrological conditions rather than by nutrient concentrations.