77 resultados para Phase I
Resumo:
Ti45--xZr35--xNi17+2rCU3 (x=0, 2, 4, 6 and 8) icosahedral quasicrystalline phase (I-phase) alloy powders are synthesized by mechanical alloying and subsequent annealing techniques, and the crystallographic and electrochemical characteristics are investigated. The alloy powders are I-phase, and the quasi-lattice constant decreases with increasing x value. The maximum discharge capacity of the I-phase alloy electrodes first increases and then decreases with increasing x value, and the Ti39Zr26Ni29Cu3 I-phase electrode exhibits the highest discharge capacity of 274 mAh g(--1). The high-rate dischargeability at the discharge current density of 240mA g(--1) increases from 55.31 % (x= 0) to 74.24% (x= 8). Cycling stability also increases with increasing x value. The improvement in electrochemical characteristics may be ascribed to the added nickel, which not only improves the electrochemical activity, but also makes the alloy more resistant to oxidation.
Resumo:
The epitaxial crystallization behavior of high-density polyethylene on the boundary of highly oriented isotactic polypropylene (iPP) substrates has been investigated by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). The results obtained from AFM and TEM indicate that the epitaxial nucleation of HDPE on the highly oriented iPP substrates occurs earlier than that in the pure HDPE phase, i.e., homogeneous nucleation. Therefore the epitaxially grown HDPE lamellae can grow across the boundary of the iPP substrate into the HDPE spherulitic phase with the epitaxial orientation relationship remaining.
Resumo:
Both in-field chemical investigation and in the laboratory toxic tests were carried out to systematically understand the pollution status of cadmium (Cd) and zinc (Zn) in Bohai Bay. Samples collected from surface seawater were determined to describe the distributions of Cd and Zn in Bohai Bay. The average values in our study of Cd and Zn were 0.15 mu g/L and 19.68 mu g/L, respectively. Both of them were lower than the first class limit of seawater quality standard in China. In the laboratory, antioxidant enzymes [SOD (Cu/Zn-SOD, Mn-SOD), CAT], lipid peroxidation (MDA), phase I and phase II enzymes (CYP4501A and GST) were investigated in the bivalves Chlamys farreri exposed to Cd and Zn at the concentration levels of Bohai Bay seawater, which were obtained from our in-field investigation. The reduced SOD, CAT, and EROD (7-ethoxyresorufin-O-deethylase) activities (with the inhibitory rate of 16.8%, 31.5%, and 51.6%, respectively) in Cd treatment were observed and resulted in obvious lipid peroxidation damage. However, treatment of Zn showed elevations in SOD and GST by 13.3% and 29.9%, respectively, and with no influence on lipid peroxidation. In summary, seawater quality in Bohai Bay seawater was ranked as good in general, but it seemed that Cd might possess a potential environmental risk by effecting pro-oxidant/antioxidant balance and phase I detoxification in C. farreri.
Resumo:
The phase diagram of the dodecyl dimethyl ammonium hydroxyl propyl sulfonate(DDAHPS)/1-pentanol(C5H11OH)/water ternary system has been established. It contains two isotropic monophase regions (L-1 and L-2) and a liquid crystalline region (L.C.). The isotropic phase regions have been investigated by means of Raman spectroscopy and conductivity.
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We present detail design considerations and simulation results of a forward biased carrier injection p-i-n modulator integrated on SOI rib waveguides. To minimize the free carrier absorption loss while keeping the comparatively small lateral dimensions of the modulator as required for high speed operation, we proposed two structural improvements, namely the double ridge (terrace ridge) structure and the isolating grooves at both sides of the double ridge. With improved carrier injection and optical confinement structure, the simulated modulator response time is in sub-ns range and absorption loss is minimized.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.
Resumo:
Hydrotalcite-like compounds (HTLcs): (CuMAlCO3)-Al-II-HTLcs, where M-II=Co2+, Ni2+, Cu2+, Zn2+ and Fe2+, were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs was studied in the phenol hydroxylation by H2O2 in liquid phase; then the effects of the ratio of Cu/Al, reaction temperature, solvent and pH of medium were investigated. It has been found that the uncalcined HTLcs have higher activities than those of calcined samples in this reaction. The catalyst CuAlCO3-HTLcs having Cu/Al=3 efficiently oxidized phenol and gave high yields of the corresponding diphenols in appropriate reaction conditions. A tentative reaction mechanism is also proposed. (C) 1998 Elsevier Science B.V.
Resumo:
The following points are argued: (i) there are two independent kinds of interaction on interfaces, i.e. the interaction between phases and the collision interaction, and the jump relations on interfaces can accordingly be resolved; (ii) the stress in a particle can also be divided into background stress and collision stress corresponding to the two kinds of interaction on interfaces respectively; (iii) the collision stress, in fact, has no jump on interface, so the averaged value of its derivative is equal to the derivative of its averaged value; (iv) the stress of solid phase in the basic equations for two\|phase flow should include the collision stress, while the stress in the expression of the inter\|phase force contains the background one only. Based on the arguments, the strict method for deriving the equations for two\|phase flow developed by Drew, Ishii et al. is generalized to the dense two\|phase flow, which involves the effect of collision stress.
Resumo:
Shape Memory Alloy (SMA) can be easily deformed to a new shape by applying a small external load at low temperature, and then recovers its original configuration upon heating. This unique shape memory phenomenon has inspired many novel designs. SMA based heat engine is one among them. SMA heat engine is an environment-friendly alternative to extract mechanical energy from low-grade energies, for instance, warm wastewater, geothermal energy, solar thermal energy, etc. The aim of this paper is to present an applicable theoretical model for simulation of SMA-based heat engines. First, a micro-mechanical constitutive model is derived for SMAs. The volume fractions of austenite and martensite variants are chosen as internal variables to describe the evolution of microstructure in SMA upon phase transition. Subsequently, the energy equation is derived based on the first thermodynamic law and the previous SMA model. From Fourier’s law of heat conduction and Newton’s law of cooling, both differential and integral forms of energy conversion equation are obtained.
Resumo:
The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.
Resumo:
The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy gamma-ray system is described. The gamma-ray source is the radioactive isotope of Am-241 with gamma-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed gamma-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.