98 resultados para Periodic Boundary Conditions
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
This paper reports on two-dimensional numerical simulation of cellular detonation wave in a / / mixture with low initial pressure using a detailed chemical reaction model and high order WENO scheme. Before the final equilibrium structure is produced, a fairly regular but still non-equilibrium mode is observed during the early stage of structure formation process. The numerically tracked detonation cells show that the cell size always adapts to the channel height such that the cell ratio is fairly independent of the grid sizes and initial and boundary conditions. During the structural evolution in a detonation cell, even as the simulated detonation wave characteristics suggest the presence of an ordinary detonation, the evolving instantaneous detonation state indicates a mainly underdriven state. As a considerable region of the gas mixture in a cell is observed to be ignited by the incident wave and transverse wave, it is further suggested that these two said waves play an essential role in the detonation propagation.
Resumo:
A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknown variable for third-order FC-ENO scheme and two unknown variables for fifth-order FC-ENO scheme. Numerical test results of the proposed FC-scheme were compared with traditional TVD, ENO and WENO schemes to demonstrate its high-order accuracy and high-resolution.
Resumo:
In addition to the layer thickness and effective Young’s modulus, the impact of the kinematic assumptions, interfacial condition, in-plane force, boundary conditions, and structure dimensions on the curvature of a film/substrate bilayer is examined. Different models for the analysis of the bilayer curvature are compared. It is demonstrated in our model that the assumption of a uniform curvature is valid only if there is no in-plane force. The effects of boundary conditions and structure dimensions, which are not-fully-included in previous models are shown to be significant. Three different approaches for deriving the curvature of a film/substrate bilayer are presented, compared, and analyzed. A more comprehensive study of the conditions regarding the applicability of Stoney’s formula and modified formulas is presented.
Resumo:
A new hardening law of the strain gradient theory is proposed in this paper, which retains the essential structure of the incremental version of conventional J(2) deformation theory and obeys thermodynamic restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress, higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demonstrated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoretical results agree well with the experiment results.
Resumo:
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.
Resumo:
The advent of nanotechnology has necessitated a better understanding of how material microstructure changes at the atomic level would affect the macroscopic properties that control the performance. Such a challenge has uncovered many phenomena that were not previously understood and taken for granted. Among them are the basic foundation of dislocation theories which are now known to be inadequate. Simplifying assumptions invoked at the macroscale may not be applicable at the micro- and/or nanoscale. There are implications of scaling hierrachy associated with in-homegeneity and nonequilibrium. of physical systems. What is taken to be homogeneous and equilibrium at the macroscale may not be so when the physical size of the material is reduced to microns. These fundamental issues cannot be dispensed at will for the sake of convenience because they could alter the outcome of predictions. Even more unsatisfying is the lack of consistency in modeling physical systems. This could translate to the inability for identifying the relevant manufacturing parameters and rendering the end product unpractical because of high cost. Advanced composite and ceramic materials are cases in point. Discussed are potential pitfalls for applying models at both the atomic and continuum levels. No encouragement is made to unravel the truth of nature. Let it be partiuclates, a smooth continuum or a combination of both. The present trend of development in scaling tends to seek for different characteristic lengths of material microstructures with or without the influence of time effects. Much will be learned from atomistic simulation models to show how results could differ as boundary conditions and scales are changed. Quantum mechanics, continuum and cosmological models provide evidence that no general approach is in sight. Of immediate interest is perhaps the establishment of greater precision in terminology so as to better communicate results involving multiscale physical events.
Resumo:
A numerical study on wave dynamic processes occurring in muzzle blast flows, which are created by a supersonic projectile released from the open-end of a shock tube into ambient air, is described in this paper. The Euler equations, assuming axisymmetric flows, are solved by using a dispersion-controlled scheme implemented with moving boundary conditions. Three test cases are simulated for examining friction effects on the muzzle flow. From numerical simulations, the wave dynamic processes, including two blast waves, two jet flows, the bow shock wave and their interactions in the muzzle blasts, are demonstrated and discussed in detail. The study shows that the major wave dynamic processes developing in the muzzle flow remain similar when the friction varies, but some wave processes, such as shock-shock interactions, shock-jet interactions and the contact surface instability, get more intensive, which result in more complex muzzle blast flows.
Resumo:
对微尺度气体流动,Navier-Stokes方程和一阶速度滑移边界条件的结果与实验数据相比,在滑移区相互符合,在过渡领域则显著偏离,为改善Navier-Stokes方程在过渡领域的表现,有些研究者尝试引入二阶速度滑移边界条件,如Cercignani模型,Deissler模型和Beskok-Karniadakis模型.以微槽道气体流动为例,将Navier-Stokes方程在不同的二阶速度滑移模型下的结果与动理论的直接模拟Monte Carlo(DSMC)方法和信息保存(IP)方法以及实验数据进行比较.在所考察的3种具有代表性的二阶速度滑移模型中,Cercignani模型表现最好,其所给出的质量流率在Knudsen数为0.4时仍与DSMC和IP结果相符;然而,细致比较表明,Cercignani模型给出的物面滑移速度及其附近的速度分布在滑流区和过渡领域的分界处(Kn=0.1)已明显偏离DSMC和IP的结果.
Resumo:
By using the kernel function of the smoothed particle hydrodynamics (SPH) and modification of statistical volumes of the boundary points and their kernel functions, a new version of smoothed point method is established for simulating elastic waves in solid. With the simplicity of SPH kept, the method is easy to handle stress boundary conditions, especially for the transmitting boundary condition. A result improving by de-convolution is also proposed to achieve high accuracy under a relatively large smooth length. A numerical example is given and compared favorably with the analytical solution.
Resumo:
A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Classical fracture mechanics is based on the premise that small scale features could be averaged to give a larger scale property such that the assumption of material homogeneity would hold. Involvement of the material microstructure, however, necessitates different characteristic lengths for describing different geometric features. Macroscopic parameters could not be freely exchanged with those at the microscopic scale level. Such a practice could cause misinterpretation of test data. Ambiguities arising from the lack of a more precise range of limitations for the definitions of physical parameters are discussed in connection with material length scales. Physical events overlooked between the macroscopic and microscopic scale could be the link that is needed to bridge the gap. The classical models for the creation of free surface for a liquid and solid are oversimplified. They consider only the translational motion of individual atoms. Movements of groups or clusters of molecules deserve attention. Multiscale cracking behavior also requires the distinction of material damage involving at least two different scales in a single simulation. In this connection, special attention should be given to the use of asymptotic solution in contrast to the full field solution when applying fracture criteria. The former may leave out detail features that would have otherwise been included by the latter. Illustrations are provided for predicting the crack initiation sites of piezoceramics. No definite conclusions can be drawn from the atomistic simulation models such as those used in molecular dynamics until the non-equilibrium boundary conditions can be better understood. The specification of strain rates and temperatures should be synchronized as the specimen size is reduced to microns. Many of the results obtained at the atomic scale should be first identified with those at the mesoscale before they are assumed to be connected with macroscopic observations. Hopefully, "mesofracture mechanics" could serve as the link to bring macrofracture mechanics closer to microfracture mechanics.
Resumo:
Single crystal gallium nitride (GaN) is an important technological material used primarily for the manufacture of blue light lasers. An important area of contemporary research is developing a viable growth technique. The ammonothermal technique is an important candidate among many others with promise of commercially viable growth rates and material quality. The GaN growth rates are a complicated function of dissolution kinetics, transport by thermal convection and crystallization kinetics. A complete modeling effort for the growth would involve modeling each of these phenomena and also the coupling between these. As a first step, the crystallization and dissolution kinetics were idealized and the growth rates as determined purely by transport were investigated. The growth rates thus obtained were termed ‘transport determined growth rates’ and in principle are the maximum growth rates that can be obtained for a given configuration of the system. Using this concept, a parametric study was conducted primarily on the geometric and the thermal boundary conditions of the system to optimize the ‘transport determined growth rate’ and determine conditions when transport might be a bottleneck.
Resumo:
A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.
Resumo:
In this paper, we study some degenerate parabolic equation with Cauchy-Dirichlet boundary conditions. This problem is considered in little Holder spaces. The optimal regularity of the solution v is obtained and is specified in terms of those of the second member when some conditions upon the Holder exponent with respect to the degeneracy are satisfied. The proofs mainly use the sum theory of linear operators with or without density of domains and the results of smoothness obtained in the study of some abstract linear differential equations of elliptic type.