29 resultados para PYRENE
Resumo:
仅以污染物浓度定义土壤污染并评价其潜在风险,缺乏对其生态毒性效应的综合考虑,不能反映土壤污染对生物及人体健康的潜在危害。传统的生态毒理研究仅局限于依据宏观生理指标,如半致死剂量,产茧量等,这些指标对环境浓度(亚致死浓度)土壤污染的响应较差甚至不响应,无法应用于环境浓度的污染土壤诊断。土壤生物微观生理、生化指标,作为一种较为敏感的土壤生态毒理效应及毒性诊断手段,近几年来成为研究热点。 本文以赤子爱胜蚓(Eisenia fetida)为供试生物,草甸棕壤为供试土壤,以国际标准组织(International Standard Organization-ISO)方法指南为参考,以蚯蚓微粒体细胞色素P450含量、抗氧化酶系(超氧化物歧化酶-SOD、过氧化氢酶-CAT和过氧化物酶-POD)和谷胱甘肽转移酶(GST)活性为指标,进行了的典型多环芳烃污染物-苯并(a)芘和内泌干扰物-壬基酚在土壤中暴露的动态量效关系研究,试验浓度范围为0.1-2 mg•kg -1。 研究结果如下:1)苯并(a)芘与细胞色素P450含量具有动态响应关系。总体上,诱导效应明显,诱导时间对P450活性影响显著(P<0.05);2)在试验浓度范围(0.1-2 mg•kg-1)内, GST对试验浓度的BaP未产生生态毒性响应;3)CAT 和POD酶活性对低浓度的BaP暴露响应具有延时性(即第7d开始响应)和阶段性(即第7d前无明显响应、第7d后响应消失)特征;4) 在BaP胁迫下,蚯蚓体内SOD产生明显响应,苯并(a)芘暴露1~3d,SOD酶活性整体升高,最大升幅30%,与对照差异显著。苯并(a)芘暴露的第7d和14d, 除0.1 mg•kg -1外,0.5~2 mg•kg-1 BaP处理组中SOD酶活性均显著降低(P<0.05),这表明BaP造成了抗氧化防御酶系的损伤。以上结果表明: 5项指标中, 代谢解毒酶系指标P450和抗氧化酶系指标SOD对BaP暴露响应较为敏感,CAT,POD以及GST的敏感性较差。各指标敏感性总体为:P450>SOD>CAT,POD>GST。综合本试验及其他相关实验结果初步确认,苯并(a)芘生态毒性>芘>菲。 低浓度(0.1~2.0 mg•kg-1)壬基酚(NP)土壤暴露动态关系研究结果表明:1)壬基酚(NP)与细胞色素P450含量具有动态响应关系。1、7、14d时,P450整体表现为低浓度下抑制,而高浓度下诱导的趋势。随着诱导时间的延长P450含量表现出显著的升高趋势;SOD活性在较高浓度3d暴露后降低,而第7、14d时显著升高。NP诱导与P450含量与SOD酶活性两种指标的响应趋势与BaP诱导下的响应趋势大体吻合。CAT的响应较前两者差,随着诱导时间的延长,在第7、14d个别浓度下CAT表现出升高趋势。GST与POD对试验浓度下的NP诱导未产生明显和快速的毒性响应。NP诱导第3dGST出现升高趋势。NP诱导的第14d POD (2 mg•kg-1)有显著降低。总体上,各指标对NP诱导的敏感性顺序依次为:P450,SOD>CAT>GST, POD。 继前期的“蚯蚓P450对土壤菲、芘暴露生态毒理研究”以及“土壤低浓度PAHs胁迫下蚯蚓差异表达基因筛选研究”之后,本论文中所进行的“土壤BaP暴露生态毒性响应研究”作为上述整体研究内容的组成部分,从两个方面获得研究进展:第一,进一步证实P450指标对低剂量多环芳烃污染响应的相对敏感性。第二,从代谢解毒酶系的角度发现苯并(a)芘生态毒性>芘>菲。这一结果与基因水平上论证的细胞色素P450(类似Cyp2R1)对 PAHs胁迫下的研究结果一致。 本论文中进行的土壤NP暴露生态毒性响应研究,首次将内分泌干扰物纳入土壤毒理研究中,丰富了土壤生态毒理学的研究内容。研究进一步证实蚯蚓细胞色素P450指标对多种污染物低剂量暴露诊断的广谱适应性。研究也为内分泌干扰物的生态毒性评价提供了基础依据。
Resumo:
沈抚灌区是我国面积最大、污灌历史最长的石油类污水灌溉区,土壤中大分子量多环芳烃污染严重,对当地粮食生产与生态安全造成严重危害。对此类污染土壤进行生物修复,对保证农产品的安全,实现当地人与自然的可持续发展具有重大的意义。 本研究以沈抚灌区污染土壤中大分子多环芳烃芘为主要研究对象,采用稳定同位素比率分析技术(IRMS),以磷脂脂肪酸(PLFA)为生物标记物,分析污染土壤参与芘降解的优势微生物类群;并以此为指导,采用分子生物学手段和传统微生物学分析方法,筛选土壤中的高效降解菌,并追踪其释放到土壤中后的动态变化与调控。 从沈抚灌区土壤富集培养芘的降解菌,经过双层平板法初筛和芘降解菌液体摇瓶复筛,获得5株以芘为唯一碳源生长的具有较高降解活性菌株。 将筛选的降解菌投加到污染土壤中,以13C标记的芘为代谢底物,以土壤微生物的磷脂脂肪酸为生物标记物,采用稳定同位素比率分析方法(GC-C-IRMs),分析投加的降解菌在原位土壤中的降解作用。结果显示,与不加菌的对照土壤相比,富含13C的磷脂脂肪酸指纹图谱相似度较高的为投加了菌株B05和菌株B15的土壤,芘的降解效率也最高,表明这两株菌在原位土壤芘降解中发挥了重要作用。根据形态学观察、16项生理生化鉴定和16S rDNA序列分析结果,将菌株B05鉴定为 Aminobacter ciceronei,将菌株B15鉴定为 Microbacterium arabinogalactanolyticum。菌株B05初步确定为一株新的芘降解菌,并对菌株培养条件进行了优化。 采用PCR-DGGE方法,研究了筛选的5株降解菌在不同的营养条件下释放到土壤中后的数量和代谢活性的变化。PCR-DGGE图谱分析表明:投加初期外加菌在竞争中占据优势,但是随时间推移,营养物质的消耗,优势逐渐消失,PCR-DGGE的条带趋向于一致。菌株B05的稳定期相对较长,在DGGE图谱中的条带相对密度大,而且对芘的降解率最高,是一株具有潜在应用价值的高效降解菌。混合菌比单一菌降解率高,添加碳氮源有利于外加菌群更快更好的适应在污染土壤中生存,而且有助于对多环芳烃的降解。
Resumo:
该论文是在综合分析中国典型土壤的污染特性与土壤环境背景的基础上,研制开发出适合中国国情的有机污染土壤的污染特性与土壤环境背景的基础上,研制开发出适合中国国情的有机污染土壤清洁技术.采用固定化进行有机物降解试验,目的是以期开发出一条提高有机污染土壤降解效率的新途径.该论文首先通过菌种的筛选与鉴定后,进行微生物的固定化包埋,挑选出最佳的固定化载体.最合理的载体配比是:聚乙烯醇100(p/gL<'-1>),活性炭50(p/gL<'-1>).同时确定细菌采用化学方法进行固定化包埋,载体形状为球形;真菌采用物理方法进行固定化包埋,载体形状为莲藕型.并将固定化微生物应用于有机污染土壤菲、芘的降解.通过不同接种量的固定化微生物对菲、芘的降解、固定化微生物对不同系列浓度菲和芘的降解以及固定化微生物在自然土壤中对菲、芘降解的各参数测定,说明固定化微生物用于降解土壤中有机污染物具有一定的应用前景.该研究首次将固定化微生物用于降解土壤中有机污染物,为将来的实际应用奠定了一定的理论基础.同时首次采用了新的载体形状——莲藕型,具有一定的创新性.
Resumo:
Immobilized with PVA,sodium alginate and activated carbon,both Zoogloea sp. and Fusarium sp.strains could degrade phenanthrene and pyrene efficiently.The optimal carrier was made of 100ρ·g -1 L PVA,5 sodium alginateρ·g -1 L and 50 activated carbon ρ·g -1 L.The degradation rates of phenanthrene and pyrene in 10 days were 87.48% and 75.34% by the immobilized bacterium,37.04% and 20.85% higher than those by the free bacterium,and the rates in 15 days were 84.36% and 74.87% by the immobilized fungus,5.35% and 11.23% higher than those by the free fungus.
Resumo:
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. The most widely used method of POP destruction is incineration, which is expensive and could result in undesirable by-products. An alternative bioremediation technology, which is cheaper and environ-mentally friendly, was tested during this experiment. Two different soil types containing high and low organic matter (OM) were spiked with 100 mg/kg each of pyrene and Aroclor 1248 and planted with three different species of grasses. The objective of the study was to determine residue recovery levels (availability) and potential effectiveness of these plant species for the remediation of POPs. The results showed that recovery levels were highly dependent on the soil organic matter content—very low in all treatments with the high OM content soil compared to recoveries in the low OM soil. This indicates that availability, and, hence, biodegradability of the contaminants is dependent on the organic matter content of the soil. Moreover, the degree of availability was also significantly different for the two classes of chemicals. The polyaromatic hydrocarbon (PAH) recovery (availability) was extremely low in the high organic matter content soil compared to that of the polychlorinated biphenyls (PCBs). In both soil types, all of the plant species treatments showed significantly greater PCB biodegradation compared to the unplanted controls. Planting did not have any significant effect on the transformation of the PAHs in both soil types; however, planting with switchgrass was the best remedial option for both soil types contaminated with PCB.
Resumo:
This report describes a facile route to prepare the vesicles and large compound micelles (LCMs) from a series of poly(epsilon-benzyloxycarbonyl L-lysine)-block-poly[diethylene glycol bis(3-amino propyl) ether]-block-poly(epsilon-benzyloxycarbonyl L-lySine) (PZLL-DGBE-PZLL) in their water solution, depending on molecular weight of the polypeptides. A pyrene probe is used to demonstrate the aggregate formation of PZLL-DGBE-PZLL in solution, and also to measure their critical micelle concentration as a function of molecular weight of the polymer.
Resumo:
Herein, one water-soluble functionalized ionic liquid, 1-butyl-3-methylimidazolium dodecyl sulfate ([BMIm(+)][C12H25SO4-]), was designed and its superiorities either used as supporting electrolytes or as additives for successful establishment of MEKC with electrochemiluminescence (ECL) detection (MEKC-ECL) method were investigated. Compared with the common supporting electrolytes such as phosphate solution, 1-butyl-3-methylimidazolium dodecyl sulfate solution used as running buffers led to greatly enhanced ECL intensities and column efficiencies for negative targets, a little increase for neutral-charge ones while maintained nearly unchanged for positive ones due to the electrostatic forces between the large cation BMIm(+) and the solutes and the hydrophobic interactions resulting from the large anion C12H25SO4.
Resumo:
A facile approach to the preparation of light-responsive copolymer micelles is developed. This approach is based on the attachment of hydrophobic groups to one block of a diblock copolymer via a light-sensitive linkage. The micelles can be dissociated under light irradiation and release the encapsulated pyrene. The obtained polymeric micelles are expected to be of use as drug-delivery vehicles.
Resumo:
A polymer pair composed of poly( N-isopropylacrylamide-co-2-hydroxyethyl methacrylate terminated oligo( L-lactide)) ( poly( NIPAAm-co-HEMAOLLA)) graft random copolymer and poly( D-lactide) ( PDLA) homopolymer was self-assembled into micelles with a diameter around 100 nm through the stereocomplexation between the OLLA branches of the graft copolymer and the PDLA homopolymer. The specific intermolecular stereocomplexation was considered as the powerful ordered aggregation force in the micelle cores. The shell's component of poly( NIPAAm-co-HEMA) and its thermosensitivity were proved by H-1 nuclear magnetic resonance ( NMR) and dynamic light scattering ( DLS), respectively. The incorporation of PDLA homopolymer into the graft copolymer affected the micelle size and the critical micelle concentration ( CMC). The incorporation of even a small quantity ( 11 wt%) of PDLA into the graft copolymer micelles resulted in a great decrease of the micelle size. For the graft copolymer with low per cent grafting of 18%, the size of the corresponding micelles decreased slightly even if the PDLA content increased up to 33 wt%. For the graft copolymer with high per cent grafting of 58%, with the further increase of PDLA content, the size of the corresponding micelles at first decreased further and then began to increase. The molecular weight of the PDLA did not significantly affect the micelle size.
Resumo:
The micelle formation of a series of amphiphilic block copolymers in aqueous and NaCl solutions was studied by a fluorescent probe technique using pyrene as a 'model drug'. These copolymers were synthesized from poly (ethylene glycol) (PEG) and L-lactide by a new calcium ammoniate catalyst. They had fixed PEG block lengths (44, 104 or 113 ethylene oxide units) and various poly(L-lactide) (PLLA) block lengths (15-280 lactide units). The critical micelle concentration (cmc) was found to decrease with increasing PLLA content. The distinct dissimilarity of the cmc values of diblock and triblock copolymers based on the same block length of PEG provided evidence for the different configurations of their micelles. It was also observed that the introduction of NaCl salt significantly contributed to a decrease in the cmcs of the copolymers with short PEG and PLLA blocks, while it had less influence on the cmcs of copolymers with long PEG or PLLA blocks. The dependence of partition coefficients ranging from 0.2x10(5) to 1.9x10(5) on the PLLA content in the copolymer and on the micelle configuration was also discussed.
Resumo:
Triblock copolymer PCL-PEG-PCL was prepared by ring-opening polymerization of epsilon-caprolactone (CL) in the presence of poly(ethylene glycol) catalyzed by calcium ammoniate at 60 degreesC in xylene solution. The copolymer composition and triblock structure were confirmed by H-1 NMR and C-13 WR measurements. The differential scanning calorimetry and wide-angle X-ray diffraction analyses revealed the micro-domain structure in the copolymer. The melting temperature T-c and crystallization temperature T-c of the PEG domain were influenced by the relative length of the PCL blocks. This was caused by the strong covalent interconnection between the two domains. Aqueous micelles were prepared from the triblock copolymer. The critical micelle concentration was determined to be 0.4-1.2 mg/l by fluorescence technique using pyrene as probe, depending on the length of PCL blocks, and lower than that of corresponding PCL-PEG diblock copolymers. The H-1 NMR spectrum of the micelles in D2O demonstrated only the -CH2CH2O- signal and thus confirmed. the PCL-core/PEG-shell structure of the micelles.
Resumo:
The complexation of acenaphthene and fluoranthene with beta-cyclodextrin (CD) in aqueous solutions in the presence and absence of ethanol was investigated by means of the time-resolved fluorescence technique. The appearance of a longer lifetime component and the increase of its fraction relative to that of the shorter lifetime component with increasing CD concentration demonstrate the formation of inclusion complex between the guest molecule and CD. The formation constants for complexation were derived from the pre-exponential factor A(i) of fluorescence decay curves. The presence of ethanol in the reaction systems enhanced the inclusion to a large extent.
Resumo:
Accumulation and distributions of aliphatic and polyaromatic hydrocarbons (PAHs) and heavy metals were measured in tissues of the clam Ruditapes philippinarum collected from 5 sites in Jiaozhou Bay, Qingdao, China. The concentrations of total aliphatic hydrocarbon and PAHs ranged from 570 to 2 574 ng/gdw (gram dry weight) and from 276 to 939 ng/gdw, in the most and least polluted sites, respectively. The bio-accumulation of hydrocarbons and PAHs in the clams appeared to be selective. Aliphatic hydrocarbons were predominantly represented by short chain (< nC(23)) n-alkanes, suggesting that petroleum hydrocarbons were likely the major contamination source. The selective uptake of 3 and 4 ring PAHs, such as naphthalene, fluorene, phenanthrene, fluoranthene and pyrene, by the clams was probably related to the physiological and bio-kinetic processes that were energetically favorable for uptake of compounds with fewer rings. Accumulation of the metals Cd, Cu, Zn, Pb, Cr, Hg, and As in the clam tissues also showed high variability, ranging from 0.043 to 87 A mu g/gdw. Among the 7 detected metals, Zn, Cd, Cu, and As had a particularly high potential of accumulation in R. philippinarum. In general, a positive correlation was found between the tissue concentrations and sediment concentrations of hydrocarbons and of some metals. Our study suggests that moderate contamination with polyaromatic hydrocarbons, and low to moderate contamination with metals, currently exists for clam R. philippinarum in Jiaozhou Bay, in comparison with other regional studies. A long-term monitoring program is certainly needed for assessment of the potential ecological influence and toxicity of these contaminants of R. philippinarum in Jiaozhou Bay.