58 resultados para PATTERN FORMATION (EXPERIMENT)
Resumo:
The density fluctuations below the onset of convection in the Rayleigh-Benard problem are studied with the direct simulation Monte Carlo method. The particle simulation results clearly show the connection between the static correlation functions of fluctuations below the critical Rayleigh number and the flow patterns above the onset of convection for small Knudsen number flows (Kn=0.01 and Kn=0.005). Furthermore, the physical nature for no convection in the Rayleigh-Benard problem under large Knudsen number conditions (Kn>0.028) is explained based on the dynamics of fluctuations.
Resumo:
Unlike those of the wild-type strain, proheterocysts of the Anabaena sp. strain PCC 7120 hetC strain keep dividing. ftsZ, the most critical cell division gene, is up-regulated in hetC proheterocysts. Heterocyst differentiation genes hglD, hglE, patB, nijB, and xisA are no longer expressed in the hetC mutant. hetC also regulates the expression of patA, a pattern formation gene.
Resumo:
Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiOx substrate at 145 degrees C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U-q0/E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes.
Resumo:
The dewetting behavior of thin polystyrene (PS) film has been investigated by placing an upper plate with a ca. 140 nm gap from the underlying substrate with the spin-coated thin polymer films. Three different kinds of dewetting behaviors of thin PS film have been observed after annealing according to the relative position of the PS film to the upper plate. Since the upper plate is smaller than the underlying substrate, a part of the polymer film is not covered by the plate. In this region (I), thin PS film dewetting occurs in a conventional manner, as previously reported. While in the region covered by the upper plate (III), the PS film exhibits unusual dewetted patterns. Meanwhile, in the area right under the edge of the plate (II) (i.e., the area between region I and region III), highly ordered arrays of PS droplets are formed. Formation mechanisms of different dewetted patterns are discussed in detail. This study may offer an effective way to improve the understanding of various dewetting behaviors and facilitate the ongoing exploration of utilizing dewetting as a patterning technique.
Resumo:
Our previous investigation showed that the ordered hexagonal island pattern in the phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/P2VP) formed due to the convection effect by proper control of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to P2VP. In this paper, we further illustrate that, by adding a proper amount of the surfactant Triton X-100 to the PS/P2VP toluene solution, the ordered hexagonal island pattern can be transformed to the ordered honeycomb pattern. The effects of the amount of Triton X-100 on the surface morphology evolution and the pattern transformation are discussed in terms of the collapse of Triton X-100, phase separation between Triton X-100/P2VP and PS, the interfacial interaction between Triton X-100/P2VP and the mica substrate, and the Benard-Marangoni convection.
Resumo:
We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
We report a simple method to directly pattern polymer-based photo luminescent material, i.e. a prepatterned mask is placed a close distance above it. The final structure is a positive replica of the lateral structures in the mask with submicrometer resolution. The comparison of luminescence efficiency before and after patterning indicates almost no degradation in optical property of the material during the experiments. The mechanism of pattern formation is also discussed.
Resumo:
In this paper a hydrodynamic approach is used to analyse carefully the flow field inChandler loop--the artificial thrombus formation. The results obtained show that near thelower meniscus where the thrombus is formed, there is a back flow accompanied with asecondary flow and its mainflow is toward the meniscus, thus providing a favourable condi-tion for corpuscle aggregation. Our finding is valuable for studying the mechanism ofthrombus formation in artificial organ and in vivo.
Resumo:
In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared.
Resumo:
Ordered macroporous materials recently have attracted much attention. A method that utilizes the condensation of monodisperse water droplets on a polymer solution is proposed for the preparation of honeycomb microporous films. Our results show that it is a general method that can be used for patterning a wide range of polymers. The presence of water vapor and polymer is necessary for the formation of regular holes in films. The formation of hexagonal packing instead of other kinds of packing takes place because the hexagonal packing has the lowest free energy. The formation mechanisms of regular hole pattern and imperfections in the hexagonal packing are proposed.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.