22 resultados para Ovid, 43 B.C.-17 A.D. or 18 A.D


Relevância:

100.00% 100.00%

Publicador:

Resumo:

从新几内亚核桃木的树皮中分离得到的吲哚类喹诺里西定生物碱10-Desbromoarborescidine A,因发现其具有阻滞钙离子通道的活性而倍受关注。10-Desbromoarborescidine A由A、B、C、D四个环组成,只有一个手性中心,是吲哚生物碱中结构较简单的一种,常作为此类生物碱全合成方法的模型化合物。但迄今为止,能高效而简便的实现手性10-Desbromoarborescidine A不对称全合成方法线路不多,大多数以不对称诱导的方式建立其手性中心,手性催化的方式仅有一例金属催化。从逆合成分析可知,Desbromoarborescidine A的全合成可以通过亚胺不对称催化还原进行关键的手性中心构建,而本课题组在之前的研究中通过手性有机小分子催化剂的发展,已将三氯硅烷氢转移还原亚胺发展成了一类简便实用、高效、高对映选择性并具有优良底物适应范围的不对称催化反应,我们希望以这一反应作为关键手段,发展一条Desbromoarborescidine A及其类似物不对称合成新路线。 根据我们设计的新路线,首先成功合成了其关键中间体,然后我们进行了关键的不对称催化尝试。用本实验室已有的高性能有机小分子催化剂虽得到了较好的对应选择性,但是产率很低。同时,为了验证整条线路的可行性,我们也用消旋的中间体进行拉通线路的尝试。但不幸的是,在脱除保护基时遇到了很大困难。尝试换不同的保护基,或改变脱保护基的顺序,都未能成功合成目标产物。究其原因可能是由于吲哚的特殊性造成的,吲哚类亚胺与常规的芳香亚胺有较大的差异,其NH基团无论保护还是不保护,对与其2位相联接的C=N双键均有很大的影响,导致其不对称催化还原难以进行。另外,由于所设计的还原产物含有处在吲哚苄位的胺基,稳定性较差,造成保护基脱除困难。 烯胺C-亚磺酰化反应是本课题组最近发现的一个新反应,之前未见文献报道。本研究对该反应进行了反应条件优化和底物扩展,发现带Cbz,Ac,COt-Bu,CO2Et,Bz等保护基的一系列环状和非环状烯胺在亚磺酸钠、DMAc和MeSiCl3的共同作用下能高效高产率生成β-胺基烯基亚砜类新化合物,为合成多官能团化的烯基亚砜新化合物提供了一条简便实用的途径。 The main constituent of Dracontomelum mangiferum B1, indoloquinolizidine alkaloid 10-Desbromoarborescidine A, has drawn great attention due to its calcium channel blocking activity. Its molecular structure is relatively simple compared with the other alkaloids of the same type, which has only one chiral center, albeit with four cycles A, B, C, and D. This compound is often used as a model target for exploring different strategies for the total synthesis of indole alkaloids. Nevertheless, so far there still lack practical and highly efficient methods for the asymmetric total synthesis of 10-Desbromoarborescidine A. Most of the current available methods rely on stoichiometric asymmetric synthesis for the construction of the chiral center. There is only one example reporting utilization of asymmetric catalysis, but with transition metal complex as the catalyst. Our retrosynthetic analysis shows that catalytic asymmetric reduction of imine could be used as the key step for the construction of the chiral center of Desbromoarborescidine A. Since in the previous studies our group has developed the asymmetric reduction of imines by trichlorosilane into a practical and highly efficient and enantioselective method using newly designed chiral organocatalysts, we hope to apply this method to develop a novel synthetic route for the total synthesis of Desbromoarborescidine A and its analogues in this study. According to the newly designed synthetic route, we first accomplished the synthesis of the key intermediates which was then examined for the critical asymmetric catalysis. The asymmetric reduction using the highly efficient organocatalysts, developed in our lab afforded high ee but poor yield. We tried different reaction conditions to improve the yield, but failed to get any good results. Simultaneously, to vertify the feasibility of the synthetic route we designed, we also tired to go through the route toward the racemic synthesis of Desbromoarborescidine A. But unfortunately, protection and deprotection proved to be big hurdles. All the different protection groups and different sequences of protection and deprotection we tried failed to get us through the designed synthetic sequence and furnish the final product. Most likely, the indole part is the culprit behind the failures.The NH group of the indole, no matter protected or not, may impact the catalytic asymmetric reduction of C-N double bond connected with 2-C. Additionally, the reduction product we designed contains an amino group in the β-position of the indole, which may cause problems due to its instability. C-sulfenylation of enamines is a novel reaction discovered recently by our group, which has not been seen before in the literature. In this study, optimization of the reaction conditions and exploration of the substrate scope were further undertaken for this reaction, which reveal that a series of enamines with N-Cbz, Ac, COt-Bu, CO2Et protection groups could all undergo smooth C-sulfinylations with the comined use of sodium benzene sulphinate, DAMc and MeSiCl3, efficiently furnishing the β-amino vinylsulfoxide products in high yield, affording a practical and highly efficient methods for synthesis of functional vinylsulfoxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

高等植物种子胚乳贮藏蛋白是种子发芽时的主要氮源,也是人类和动物食用植物蛋白的主要来源。大麦种子胚乳贮藏蛋白主要是醇溶蛋白(hordeins),占大麦胚乳总蛋白的50–60%。根据大麦醇溶蛋白的大小和组成特点,大麦醇溶蛋白被划分为三种类型:富硫蛋白亚类(B,γ-hordeins)、贫硫蛋白亚类(C-hordeins)以及高分子量蛋白亚类(D-hordeins)。B组和C组醇溶蛋白是大麦胚乳的两类主要贮藏蛋白,它们分别占大麦总醇溶蛋白成分的70–80%和10–12%。遗传分析表明,大麦B、C、D和γ-组醇溶蛋白分别是由位于大麦第五染色体1H(5)上的Hor2、Hor1、Hor3和Hor5位点编码。Hor2位点编码大量分子量相同但组成不同的B组醇溶蛋白(B-hordein)。B-hordein的种类、数量和分布是影响大麦酿造、食用及饲养品质的重要因素之一。为深入了解B-hordein基因家族的结构和染色体组织,探明Hor2位点基因表达的发育调控机制,最终达到改良禾谷类作物籽粒品质的目的,本研究以青藏高原青稞为材料,采用同源克隆法,分别克隆B-hordein基因和启动子,通过原核生物表达验证B-hordein基因功能,并利用实时定量PCR探索B-hordein基因表达时空关系,取得如下研究结果: 1. 以具有特殊B组醇溶蛋白亚基组成的9份青藏高原青稞为材料,根据GenBank中三个B-hordein基因序列(GenBank No. X03103, X53690和X53691)设计一对引物,通过PCR扩增,获得23个B-hordein基因克隆并对其进行了序列分析。核苷酸序列分析表明,所有克隆均包含完整的开放阅读框。有11个克隆都存在一个框内终止密码子,推测这11个克隆可能是假基因。推测的氨基酸序列分析表明,所有大麦B-hordein具有相似的蛋白质基本结构,均包括一个高度保守的信号肽、中间重复区以及C-端结构域。不同大麦种重复区内重复基元的数目有较大差异。青稞材料Z07–2和Z26的B-hordeins仅具有12个重复基元结构,更接近于野生大麦。这些重复基元数目的差异导致了重复区序列长度和结构的变异。这种现象极可能是由于醇溶谷蛋白基因在进化过程中染色体的不平衡交换或复制滑动所造成的。对所克隆基因和禾本科代表性醇溶谷蛋白基因进行聚类分析,结果表明所有来自栽培大麦的B-hordeins聚类成一个亚家族,来自野生大麦的B-hordeins以及普通小麦的LMW-GS聚类成另外一个亚家族,表明这两个亚家族的成员存在显著差异。此外,我们发现B-hordein基因推测的C-末端序列具有一些有规律的特征:即具有相同C-末端序列的B-hordein基因在系统发生树中聚类为同一个亚组(除BXQ053,BZ09-1,BZ26-5分别单独聚为一类外)。这个特征将有助于我们对所有B组醇溶蛋白基因家族成员进行分类,避免了在SDS-PAGE电泳图谱上仅依靠大小分类的局限性。 2. 根据上述克隆的青稞B-hordein基因的5’端序列设计三条基因特异的反向引物,以青稞Z09和Z26的基因组DNA为模板,采用SON-PCR和TAIL-PCR技术分离克隆出8个B-hordein基因的上游调控序列(命名为Z09P和Z26P)。序列分析表明,推测的TATA box位于–80 bp,CAAT–like box位于–140 bp处。此外,Z09P和Z26P中有六个序列在–300 bp处均存在一个由高度保守的EM基序和类GCN4基序构成的胚乳盒(Endosperm Box,EB),在约–560 bp处存在一个胚乳盒类似结构。而Z09P-2和Z26P-3不存在保守的胚乳盒或其类似结构,预示着这两个启动子所调控的基因表达可能受不同类型反式作用因子的调节,推测该启动子对基因的表达调控具有多样性。 3. 将B-hordein基因的开放阅读框定向克隆到表达载体pET-30a中,将其导入大肠杆菌表达菌株BL21中进行外源基因的诱导表达以验证所克隆基因的功能。结果表明仅含重组子pET-BZ07-2和pET-BZ26-5的BL21细菌有目的表达蛋白产生。在诱导3 h时的蛋白表达量最高;3 mM IPTG诱导的蛋白表达量要高于1 mM IPTG诱导的表达量。这为分离纯化B-hordein蛋白以及进一步研究其对大麦籽粒品质的影响奠定基础。 4. 根据从青稞Z09和Z26中分离克隆的B-hordein基因序列设计一对基因特异的引物,同时,选择大麦α-微管蛋白基因(GenBank no. U40042)为看家基因并设计特异引物,利用实时荧光定量PCR检测了青稞籽粒4个胚乳发育时间段的B-hordein基因表达,荧光定量结果显示:两份材料中B-hordein基因的表达量均随发育过程的进行而逐渐升高。Z09中B-hordein基因在开花后7天开始转录,而Z26开花4天后就有低水平B-hordein的表达,这表明Z26中B-hordein基因可能比Z09表达的较早或者Z09中B-hordein基因表达水平较低以致于不能被检测到。此外,在4个不同的胚乳发育时期中,Z26中B-hordein基因的表达量均高于Z09材料。在开花12天到18天的过程中,Z09和Z26中B-hordein基因的表达水平有一个急剧性的升高。这说明在不同胚乳发育时期,Hor2位点的B-hordein等位基因变异体存在mRNA的差异表达。 Seed endosperm storage proteins in higher plants are the main resources of nitrogen for germinating and plant proteins for human and animals. Barley prolamins (also called hordeins) are the major storage proteins in the endosperm and account for 50–60% of total proteins. Hordeins are classically divided into three groups: sulphur-rich (B, γ-hordeins), sulphur-poor (C-hordeins) and high molecular weight (HMW, D-hordeins) hordeins based on the size and composition. B-hordeins and C-hordeins are two major groups and each respectively account for about 70-80% and 10-12% of the total hordein fraction in barley endosperm. Genetic analysis showed that B-, C-, C-, γ-hordeins are encoded by Hor2, Hor1, Hor3 and Hor5 locus on the chromosome 1H (5). Hor2 locus is rich in alleles that encode numerous heterogeneous B-hordein polypeptides. It is reported that B-hordein species, quantity and distribution are significant factors affecting malting, food and feed quality of barley. To understand comprehensively the structure and organization of B-hordein gene family in hull-less barley and explore the developmental control mechanisms of Hor2 locus gene expression and eventually to better exploitation in crop grain quality improvement, we isolated and cloned B-hordein genes and promotors of hull-less barley from Qinghai-Tibet Plateau by PCR, and testified their expression founction in bacteria expression system and explore their spatial and temporal expression pattern by quantitative real time PCR. Our results are as followed, 1. Twenty-three copies of B-hordein gene were cloned from nine hull-less barley cultivars of Qinghai-Tibet Plateau with special B-hordein subunits and molecularly characterized by PCR, based on three B-hordein genes published previously (GenBank No. X03103, X53690 and X53691). DNA sequences analyses confirmed that the six clones all contained a full-length coding region of the barley B-hordein genes. Eleven clones all contain an in-frame stop codon and they are probably pseudogenes. The analysis of deduced amino acid sequences of the genes shows that they have similar structures including signal peptide domain, central repetitive domain, and C-terminal domain. The number of the repeats was largerly variable and resulted in polypeptides in different sizes or structures among the genes. Twelve such repeated motifs were found in Z07–2 and Z26, and they are close to those of the wild barleys, and it is most probably caused by unequal crossing-over and/or slippage during replication as suggested for the evolution of other prolamins. The relatedness of prolamin genes of barley and wheat was assessed in the phylogenetic tree based on their polypeptides comparison. Our phylogenetic analysis suggested that the predicted B-hordeins of cultivated barley formed a subfamily, while the B-hordeins of wild barleys and the two most similar sequences of LMW-GS of T. aestivum formed another subfamily. This result indicated that the members of the two subfamilys have a distinctive difference. In addition, we found the B-hordeins with identical C-terminal end sequences were clustered into a same subgroup (except BXQ053,BZ09-1 and BZ26-5 as a sole group, respectively), so we believe that B-hordein gene subfamilies possibly can be classified on the basis of the conserved C-terminal end sequences of predicted polypeptide and without the limit of SDS-PAGE protein banding patterns. 2. The specific primers were designed according to the published sequences of barley B-hordein genes from Z09 and Z26. Using total DNA isolated from them as the templates, eight clones (designated Z09Pand Z26P) of upstream sequences of the known B-hordein genes was obtained by TAIL-PCR and SON-PCR. Sequences analysis shows that the putative TATA box was present at position –80 bp and CAAT-like box at position –140 bp. Besides, a putative Endosperm Box including an Endosperm Motif (EM) and a GCN4-Like Motif was found at position –300 bp in six clones, and another Endosperm-like box was found at positon –560 bp. While the Endosperm Box or Endosperm-like box was not found in Z09P-2 and Z26P-3. This may indicate that gene expression drived by the two promtors was probably controlled by different trans-acting factors and the genetic control mechanism of corresponding gene expression may be diverse. 3. The B-hordein genic region coding for the mature peptide was cloned into expression vector pET-30a and transformed into bacterial strain BL21 for identifying gene expression fountion. Protein SDS–PAGE analysis showed that only the transformed lysate with the pET-BZ07-2 and pET-BZ26-5 constructs produced proteins related to B-group hordeins of barley, and the mounts of proteins induced by 3 mM IPTG and 3 h were higher than other conditions. This established a base for isolating and putifying B-hordein and further exploring their effects on barley grain quality. 4. The gene-specific primers of B-hordein genes from Z09 and Z26 were used for the quantification of B-hordein gene expression. The α-tubulin gene from Hordeum vulgare subsp. vulgare (GenBank accession number U40042) was used as a control gene. The result shows the transcription of the B-hordein genes in Z09 was found 7 days after flowering, while the transcription of the B-hordein genes in Z26 was found 4 days after flowering, but at a very low level, and it suggested that the B-hordein genes in Z26 probably expressed earlier than those in Z09, or the B-hordein genes in Z09 expressed at so a lower level than Z26 that it can not detected. In addition, B-hordein genes in Z26 accession showed higher expression levels than those in Z09 in four developing stages. Furthermore, a progressive increase in the expression levels of the B-hordein genes between 12 and 18 days after anthesis was observed in both Z09 and Z26. It implies that the B-hordein allelic variants encoded by Hor2 locus exist the differential expression in mRNA levels of during barley endosperm development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yields, correlation shapes, and mean transverse momenta p(T) of charged particles associated with intermediate-to high-p(T) trigger particles (2.5 < p(T) < 10 GeV/c) in d + Au and Au + Au collisions at root s(NN) = 200 GeV are presented. For associated particles at higher p(T) greater than or similar to 2.5 GeV/c, narrow correlation peaks are seen in d + Au and Au + Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle pT < 2 GeV/c, a large enhancement of the near- (Delta phi similar to 0) and away-side (Delta phi similar to pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au + Au collisions compared to d + Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at Delta phi similar to pi in central Au + Au collisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anhydrous SmCl3 reacts with two equal of Li(1-3-(Bu2C5H3)-Bu-t) to give a complex (1,3-(Bu2C5H3)-Bu-t)(2) Sm(mu -Cl)(2)Li(THF)(2) (C34H58Cl2LiO2Sm, M-r = 726.99), monoclinic, space group P2(1)/n, a = 10.615(2), b = 21.037(4), c = 17.166(3) Angstrom, beta = 93.60(3)degrees, V = 3825.7 (13) Angstrom (3), Z = 4, D-c = 1.262 Mg/m(3), mu = 1.699 mm(-1) and F(000) = 1508, final R = 0.0387 and wR = 0.0741 for 5320 observed[I greater than or equal to2 sigma (I)] reflections. The average Sm - C distance is 2.73 Angstrom. Sm - Cl1 and Sm - Cl2 distances are 2.719 (2) and 2. 697 (2) Angstrom, respectively. Two 1, 3-(Bu2C5H3)-Bu-t-ring centroids and two mu (2)-bridging chloride atoms around Sm atom form a distorted tetrahedron.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of LnCl3.2LiCl with 1 equiv of MeCpNa in THF gives the complexes [(THF)2Li(mu-Cl)2]2[MeCpLn(THF)] (Ln = Nd (1), La (2)) in good yield. These precursors react further with 2 equiv of LiNPh2 to produce the new complexes [Li(DME)3][MeCpLn(NPh2)3] (Ln = La (3), Pr (4), Nd (5)). They have been characterized by elemental analyses and IR and NMR spectra, as well as by structural analyses of 1 and 3. The chloride 1 crystallizes in the monoclinic space group P2(1)/n (No. 14) with a = 12.130 (5) angstrom, b = 17.343 (5) angstrom, c = 17.016 (5) angstrom, beta = 108.54 (3)-degrees, V = 3393.87 angstrom3, Z = 4, and D(c) = 1.45 g/cm3. Least-squares refinement led to a final R value of 0.051 (I greater-than-or-equal-to 3-sigma(I(o))) for 2004 independent reflections. Complex 3 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 18.335 (6) angstrom, b = 16.576 (5) angstrom, c = 17.461 (6) angstrom, beta = 96.04 (3)-degrees, V = 5277.17 angstrom3, D(c) = 1.26 g/cm3, Z = 4, and R = 0.057 (I greater-than-or-equal-to 2.5-sigma(I(o))) for 3378 reflections. The structure of 3 consists of discrete ion pairs [Li(DME)3]+ and [MeCpLa(NPh2)3]- with average La-N and La-C(ring) distances of 2.459 (8) and 2.84 (1) angstrom, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of GdCl3 with 1 equiv of NaC5Me5 generates a neutral complex C5Me5GdCl2(THF)3 and a novel complex {Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-2-Cl)3(mu-3-Cl)2}2.6THF whixh recrystallizes from THF in triclinic, the space group P1BAR with unit cell dimentions of a 12.183(4), b 13.638(6), c 17.883(7) angstrom, alpha-110.38(3), beta-94.04(3), gamma-99.44(3)-degrees, V 2721.20 angstrom-3 and D(calc) 1.43 g cm-3 for Z = 1. Least-squares refinement of 2170 observed reflections led to a final R value of 0.047. The title complex consists of two Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-3-Cl)3(mu-3-Cl)2 units bridged together via two mu-2-THF to Na coordination. Each Gd ion is surrounded by one C5Me5 ligand, two mu-3-Cl, two mu-2-Cl and one THF in a distorted octahedral arrangement with average Gd-C(ring) 2.686(33), Gd-mu-2-Cl 2.724(7), Gd-mu-3-Cl 2.832(8) and Gd-O 2.407(11) angstrom. The sodium ion coordinates to two bridging THF, two mu-2-Cl and two mu-3-Cl to form a distorted octahedron with average Na-mu-2-O, Na-mu-2-Cl and Na-mu-3-Cl of 2.411(21), 2.807(15) and 2.845(12) angstrom, respectively.