63 resultados para Oligomere, Supramolekulare Chemie, Festphasensynthese, Blockcopolymere
Resumo:
Novel poly(amide imide)s (PAI) containing alkyl-substituted cyclohexylidene moieties were synthesized by conventional polycondensation of trimellitic anhydride chloride with novel aromatic diamines followed by chemical imidization using acetic anhydride and pyridine. The inherent viscosities of the resulting PAIs are relatively high and range from 71 to 112 mt g(-1). The prepared PAIs show excellent thermal stability and good solubility. The glass transition temperatures (T-g) measured by DSC are observed in the range of 312-342 degrees C. Furthermore, all the polymers are readily soluble in less hygroscopic organic solvents like cyclohexanone, gamma-butyrolactone as well as aprotic polar solvents.
Resumo:
Some novel binary and ternary complexes of rare earth ions (Gd, Eu, Tb) with N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline were synthesized by homogenous precipitation and characterized by elemental analysis, IR spectra, UV/Vis spectra, and thermal analysis. The phosphorescence spectra and lifetimes of gadolinium complexes were measured, and the triplet state energies of N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline as well as the energy transfer efficiencies between N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline were determined. The photophysical properties such as luminescence and intramolecular energy transfer between the rare earth center ions and the ligands and between ligands are discussed.
Resumo:
Photophysical properties (e.g. luminescence and energy transfer) of binary and ternary complexes of Gd3+, Eu3+, and Tb3+ with aminobenzoic acids and 1,10-phenanthroline were studied in connection with their spectroscopic characterization. Intramolecular energy transfer between center ions and ligands as well as between ligands is discussed in detail.
Resumo:
An organo-soluble polyimide based on 4,4'-(1,4-phenylenedioxy)diphthalic anhydride and 2,2'-dimethyl-4,4'-methylenedianiline was synthesized by two-step polycondensation accompanied by chemical imidization. Polyimide films were prepared by spray casting onto glass substrates. The study focused on the separation of carbon dioxide (CO2) from natural gas and the enrichment of methane (CH4) from butane (C4H18). The permeability and permselectivity coefficients of these gases were determined.
Resumo:
Mechanical and structural properties of blends of phenolphthalein poly(ether sulfone) (PBS-C) with ultra-high molecular weight polyethylene (UHMWPE) were investigated using tensile and bending testing, scanning electron microscopy and transition electron microscopy. The incorporation of minor amounts of UHMWPE (2 wt.-%) into PES-C has a reinforcement effect. With higher concentrations of UHMWPE, the mechanical properties decrease gradually. Structural studies demonstrated that the blends are multiphasic in the whole composition range. The minor UHMWPE, dispersed uniformly and oriented along the flow direction, as well as the strong interfacial adhesion contribute to the increase of the mechanical performance of the blends. The domain size of the UHMWPE phase was found to increase with the increase of its concentration.
Resumo:
Polyamide 1010/poly(propylene) (PA1010/PP) blends were investigated with and without the addition of poly(propylene)-graft-glycidyl methacrylate (PP-g-GMA). The effect of the compatibilizer on the thermal properties and crystallization behavior was determined by differential scanning calorimetry and wide-angle X-ray diffraction. From the results it is found that the crystallization of PA 1010 is significantly affected by the presence of PP-g-GMA. PP/PA 1010 (75/25) blends containing higher amounts of PP-g-GMA show concurrent crystallization at the crystallization temperature of PP. Isothermal crystallization kinetics also were performed in order to investigate the influence of the compatibilized process on the nucleation and growth mechanism. In the PP/PA 1010 (25/75) blends, concurrent crystallization behavior was not observed, even though the amount of PPg-GMA was high.
Resumo:
Poly(ether urethane) cationomers based on poly(oxytetramethylene), 4,4'-bibenzyldiisocyanate, N-methyldiethanolamine as chain extender, and acrylic acid/poly(acrylic acid) as quaternization agent were synthesized. Pyrrole (15 wt.-%) was polymerized in films of the ionomer containing CuCl2. The films were characterized by dynamic mechanical analysis, thermogravimetry and differential scanning calorimetry. The electric conductivity of the film without polypyrrole is 7.5 . 10(-12) Omega(-1)cm(-1), while incorporation of polypyrrole increases the conductivity to 4.5 . 10(-6) Omega(-1) cm(-1).
Resumo:
Blends of a poly(ether sulfone) (PES) and a polycarbonate (PC) were prepared by melt-mixing and were studied by tensile tests, differential scanning calorimetry, dynamic mechanical analysis, density measurements and transmission electron microscopy (TEM). The blends were found to be two-phase systems and an interfacial layer was presumed to be formed between two phases, which was verified by TEM. A synergism of elongation at break and tensile modulus was shown in PES/PC blends. The effects of the crosshead speed on the mechanical properties were discussed for blends with different PES/PC weight ratios.
Resumo:
The Charpy impact fracture behaviour of unnotched specimens of phenolphthalein polyether ketone (PEK-C) was studied over a temperature range from room temperature to 220 degrees C by using an instrumented impact tester. The load-time and energy-time curves of PEK-C at different temperatures were recorded. From these curves, some important parameters, such as the maximum impact load, the maximum stress, the total impact energy, the crack initiation energy, the crack propagation energy etc., were obtained and their temperature dependences of PEK-C were investigated. The point of 100 percent maximum load on the load-time trace was shown to be the yield point. Two parameters, the ductile ratio (D.R.) and the ductility index (D.I.) were applied to characterize the ductility of PEK-C and their relationships to the relaxation processes were discussed.
Resumo:
Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to study the miscibility of blends of a graft copolymer of poly(methyl methacrylate) on linear low density polyethylene (LLDPE-g-PMMA, G-3) with poly(vinylidene fluoride)(b) (PVF2) and the compatibilization of blends of LLDPE/PVF2. The specific interaction between PMMA side chains and PVF2 in G-3/PVF2 binary blends is weaker than that between the homopolymers PMMA and PVF2. There are two states of PVF2 in the melt of a G-3/PVF2 (60/40, w/w) blend, one as pure PVF2 and the other interacting with PMMA side chains. The miscibility between PMMA side chains and PVF2 affects the crystallization of PVF2. LLDPE-g-PMMA was demonstrated to be a good compatibilizer in LLDPE/PVF2 blends, improving the interfacial adhesion and dispersion in the latter. Diffusion of PMMA side chains into PVF2 in the interfacial region reduces the crystallization rate and lowers the melting point (T-m) and the crystallization temperature (T-c) of PVF2 in the blends.
Resumo:
The plastic zone size and crack opening displacement of phenolphthalein polyether ketone (PEK-C) at various conditions were investigated. Both of them increase with increasing temperature (decreasing strain rate), i.e. yield stress steadily falls. Thus, the mechanism increasing the yield stress leads to increased constraint in the crack tip and a corresponding reduction in the crack opening displacement and the plastic deformation zone. The effect of the plastic deformation on the fracture toughness is also discussed.
Resumo:
According to stress relaxation curves of phenolphthalein poly(ether ketone) (PEK-C) at different temperatures and the principle of time-temperature equivalence, the master curves of PEK-C at arbitrary reference temperatures are obtained. A coupling model (Kohlrausch-Williams-Watts) is applied to explain quantitatively the different temperature dependence of stress relaxation behavior and the relationship between stress relaxation and yield phenomenon is established through the coupling model.