23 resultados para OSL
Resumo:
The unique geologic, geomorphic and climatic conditions of southeast Tibet have made the region to develop the multi-style and frequently occurring geologic hazards, especially the collapses and landslides and debris flows along the section of Ranwu-Lulang in Sichuan-Tibet highway. However, most of those geologic hazards have close relationship with the loose accumulations. That is, the loose accumulations are the main carrier of most geologic hazards. Thereof, the huge-thick accumulations along the highway is regarded as the objective in the thesis to study the geologic background, hazarding model and mitigation methods comprehensively, based on the multi-disciplinary theories and former materials. First of all, in the paper, based on field engineering geologic investigations, the genetic type and the characteristics of spatiotemporal distribution of the huge-thick loose accumulations along the highway, have been analysized from the factors of regional geology and geomorphy and climate, as well as the coupling acting of those factors with inoculation and eruption of the loose accumulations geologic hazards. The huge-thick loose accumulations has complex genetic types and specific regulations of spatiotemporal distribution, closely controlled by the outer environment of the region. The accumulations are composed of earth and boulder, with disorder structure and poor sorting, specific forming environments and depositing conditions. And its physical and mechanic properties are greatly distinguished from rock and common earth inland. When Sichuan-Tibet highway was firstly constructed along the north bank of Purlung Tsangpo River, the huge-thick loose accumulations was cut into many high and steep slopes. Through the survey to the cut-slopes and systematic investigation to their failures, the combination of height and angle of the accumulations slope has been obtained. At the same time, the types of genetic structure of those cut-slopes are also analysized and concluded, as well as their failure models. It is studied in the paper that there are piaster, duality, multielement and complexity types in genetic structure, and rip-dump-repose, rip-shear-slip and weathering-flake types in failure models. Moreover, it is briefly introduced present engineering performance methods and techniques dealing with the deformation and failure of the accumulations cut-slope. It is also suggested that several new techniques of slope enforcement and the method of landslide and rockfall avoiding should be applied. The research of high and steep cut-slope along the highway has broadened the acknowledgement of the combination of cut-slope height and angle. Especially, the dissertation also has made the monographic studies about the geologic background and hazarding models and prevention methods of some classic but difficult accumulations geologic hazards. They are: (1) Research of the engineering geologic background of the 102 landslide group and key problems about the project of tunnel. The 102 landslide group is a famous accumulational one composed of glacial tills and glaciofuvial deposit. The tunnel project is a feasible and optional one which can solve the present plight of “sliding after just harnessing” in the 102 section. Based on the glacial geomorphy and its depositing character, distribution of seepage line, a few drillhole materials and some surveying data, the position of contact surface between gneiss and accumulations has been recognized, and the retreating velocities of three different time scales (short, medium and long term) have been approximately calculated, and the weathering thickness of gneiss has also been estimated in the paper. On the basis of above acknowledgement, new engineering geomechnic mode is established. Numerical analysis about the stability of the No.2 landslide is done by way of FLAC program, which supplies the conclusion that the landslide there develops periodically. Thereof, 4 projects of tunnel going through the landslide have been put forwards. Safety distance of the tunnel from clinohefron has been numerically analysized. (2) Research of the geologic setting and disaster model and hazard mitigation of sliding-sand-slope. From the geologic setting of talus cone, it is indicated that the sliding-sand-slope is the process of the re-transportation and re-deposit of sand under the gravity action and from the talus cone. It is the failure of the talus cone essentially. The layering structure of the sliding-sand-slope is discovered. The models of movement and failure of the sliding-sand-slope has been put forwards. The technique, “abamurus+grass-bush fence+degradable culture pan”, is suggested to enforcement and green the sliding-sand-slope. (3) Characteristics and hazarding model and disaster mitigation of debris flow. The sources of solid material of three oversize debris flows have been analysized. It is found that a large amount of moraine existing in the glacial valley and large landslide dam-break are the two important features for oversize debris flow to be taken place. The disaster models of oversize and common debris flows have been generalized respectively. The former model better interpret the event of the Yigong super-large landslide-dam breaking. The features of common debris flow along the highway section, scouring and silting and burying and impacting, are formulated carefully. It is suggested that check dam is a better engineering structure to prevent valley from steeply scouring by debris flow. Moreover, the function of check dam in enforcing the slope is numerically calculated by FLAC program. (4) Songzong ancient ice-dammed lake and its slope stability. The lacustrine profile in Songzong landslide, more than 88 meters thick, is carefully described and measured. The Optical Simulated Luminescence (OSL) ages in the bottom and top of the silty clay layer are 22.5±3.3 kaB.P., 16.1±1.7 kaB.P., respectively. It is indicated by the ages that the lacustrine deposits formed during the Last Glacial Maximum ranging from 25ka B.P. to 15ka B.P. The special characteristics of the lacustrine sediment and the ancient lake line in Songzong basin indicated that the lacustrine sediment is related to the blocking of the Purlung Tsangpo River by the glacier in Last Glacial Maximum from Dongqu valley. The characteristics of the lacustrine profile also indicate that the Songzong ice-dammed lake might run through the Last Glacial Maximum. Two dimensional numerical modeling and analysis are done to simulate the slope stability under the conditions of nature and earthquake by FLAC program. The factor of safety of the lacusrtine slope is 1.04, but it will take place horizontal flow under earthquake activity due to the liquefaction of the 18.33 m silt layer. The realign to prevent the road from landslide is suggested.
Resumo:
The latest two extreme scenarios of last glacial maximum and Holocene climatic optimum marked extreme situations in China. This paper aims to reconstruct the fossil extensions and paleoclimate of deserts in eastern China during this typical period. Aeolian sequence responds the climate change by virtue of alternation of aeolian sand layer and sandy soil layer, which correspond aridity and humidity, respectively. There is a set of contrastive deposits made up of loose sand layer and overlying dark sandy soil below land surface. This developed soil and underlying deep aeolian sand respond to H.O. and late last glacial, i.e. LGM. The typical bottom sand layers of about 50 profiles of Hulun Buir Desert, Horqin Desert and Otindag Desert were dated using OSL to confirm that they did deposid in LGM. Based on the locations of these LGM sand, distrution of gobi-desert-loess and landform control, the distribution in LGM of the three deserts were reconstructed. For the block of eastern mountain, the extreme eastern boundary of Hulun Buir Desert and Otindag Desert are not just functioned by climate background. The east of Horqin Desert is plain, hence eastern boundary of this desert is maily controlled by climate. It is considered that quite a lot of aeolian sand of LGM origined from fluvial deposit by observing regional distribution of river and SEM of sand grains. The environment alternation of of LGM-H.O. is featured by extensive expanse of active dune in LGM and grassland in H.O. Combined grain-size, susceptibility, TOC, colour and SEM measurement, the OSL chronology of relatively continued profiles since LGM of the three deserts are divided into four periods: eolian sand (15-10ka)- sandy soil (10-5ka)- alternation of black sand and yellow sand- reworking of LGM sand as destroy of soil.
Resumo:
The main research projects reported in this paper are the establishment of a luminescence (OSL/TL) dating laboratory in The Institute of Geology and Geophysics, CAS, and studies on OSL dating technique and protocol of sediments from North China. These projects have been suggested in order to fit in with the needs of research developments in environmental changes, in particular the aridity and desertification in North China. A new luminescence dating laboratory in which there are a Rise TL/OSL-DA-15B/C reader with Sr-90 beta source, a set of Little More Tape 9022 alpha and beta irradiators, three set of Daybreak 583 intelligent alpha counters and sample preparation system has been set up in the Institute in June 2001. The courses of the establishment of a new laboratory involved a series of technical works, besides making a suitable choice of the equipment, as follows: installing and testing TL/OSL reader, calibrating the dose rate of the beta and alpha sources in the irradiators with the standard sources, testing and calibrating the count rates of the thick source alpha counting in the alpha counters with a standard sample, and then dating of the know age samples to check and examine the OSL/TL dating system. All data obtained from above calibrations and tests show that the established OSL/TL system, including the used equipment in it, can be used to determine age of the geological and archaeological samples with an error of equivalent dose (De) of less than 5%. The OSL dates of several sediment samples obtained from the system are good agreement with those from the OSL dating laboratory in Hong Kong University and ~(14)C dates within 1 - 2 standard deviations. The studies on OSL dating technique and protocol of sediment samples being in progress involve the De determinations with single aliquot regeneration (SAR) (Murray and Wintle, 2000) of the coarse grain quartz from sand dune samples and comparison of the De determinations obtained from SAR with those measured by using multiple aliquot regeneration of loess fine grains. The preliminary results from these research works are shown as follows. The very low natural equivalent dose (De) of about 0.012 - 0.03 Gy, corresponding age of less than 10 years, for BLSL (blue light stimulated luminescence) of the coarse grain quartz from modern sand dune samples in Horqin sand fields has been determined with both the SAR and multiple aliquot regeneration (MAR) techniques. This imply that the BLSL signal zeroing of the quartz could be reached before burying of the sand in Horqin sand fields. The De values and ages of the coarse grain quartz measured with SAR protocol are in good agreement with those obtained from multiple aliquot technique for the modern sand dune samples, but the errors of De from the MAR is greater than those from the SAR. This may imply that the higher precision of age determination for younger sand dune samples could be achieved with the SAR of coarse grain quartz. The MAR combining with "Australian Slide method" may be a perfect choice for De measurements of loess fine grain samples on the basis of analysis of De values obtained from the SAR and from the MAR. The former can be employed to obtain a reliable age estimate of loess sample as older as approximately SO ka BR There is a great difference between De determinations from the (post-IR) OSL of the SAR (Roberts and Wintle, 2001) and those from independent or expected estimates for the older samples. However, the age estimates obtained from the (post-IR) OSL of the SAR are mostly closed to the independent age determinations for the younger (age less than 10 ka) fine grain samples. It may be suggested that the (post-IR) OSL of the SAR protocol of the fine grain fraction would be a suitable choice to dating of the younger samples, but may be unsuitable for the older samples.