18 resultados para Nutrition - Labeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new labeling reagent, 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP), coupling with liquid chromatography (LC) with electrospray ionization mass spectrometry (ESI-MS) for the detection of carbohydrates from a famous Tibetan medicine is reported. Carbohydrates were derivatized to their bis-NMP-labeled derivatives. The method, in conjunction with a gradient elution, offered a baseline resolution of carbohydrate derivatives on a reversed phase Hypersil ODS-2 column. The carbohydrates such as mannose, galacturonic acid, glucuronic acid, rhamnose, glucose, galactose, xylose, arabinose, and fucose could be successfully detected by UV and ESI-MS. Derivatives showed intense protonated molecular ion at m/z [M+H]+ in positive ion mode. The mass to charge ratios of characteristic fragment ions at m/z 473.0 could be used for the accurately qualitative identification of carbohydrates; this characteristic fragment ion was from the cleavage of C2-C3 bond in the carbohydrate chain giving the specific fragment ions at m/z [MH-CmH2m+1Om-H2O](+) for pentose, hexose, and glyceraldehydes, and at m/z [MH-CmH2m-1Om+1-H2O](+) for alduronic acids, such as galacturonic acid and glucuronic acid (m=n-2, n is carbon atom number of carbohydrate). Compared with the traditional 1-phenyl-3-methyl-5-pyrazolone (PMP) reagent, currently synthesized NMP show the advantage of higher sensitivity to carbohydrate compounds with UV and ESI-MS detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) coupled with capillary electrophoresis (CE) with DAD detection for the determination of carbohydrates has been developed. The chromophore in the 1-phenyl-3-methyl-5-pyrazolone (PMP) reagent is replaced by naphthyl functional group, which results in a reagent with very high molar absorptivity (epsilon(251nm) = 5.58 x 10(4) L mol(-1) cm(-1)). This pen-nits NMP-labeled carbohydrates to be detected with UV absorbance in standard 50-mu m-i.d. fused silica capillaries by zone electrophoresis. in this mode, nanomolar concentrations of detection limits are obtained. The method for the derivatization. of carbohydrates with NMP is simplified. The derivatization reaction is rapid and mild in the presence of ammonia catalyst without further transfer steps. Nine monosaccharide derivatives such as mannose, galacturonic acid, glucuronic acid, rhamnose, glucose, galactose, xylose, arabinose and fucose can successfully be detected in CE mode. Good reproducibility can be obtained with relative standard deviation (R.S.D.) values of the migration times and peak area, respectively, from 0.44 to 0.48 and from 3.2 to 4.8. Furthermore, the developed method has been successfully applied to the analysis of carbohydrates in the hydrolyzed rape bee pollen samples. (C) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance, liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+ H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate, (FMOC-Cl) as labeling reagents. The ratios I-BCEC/I-BCEOC = 1.94-2.17 and I-BCEC/I-FMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were < 3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of > 0.9996. (C) 2006 Elsevier B.V. All rights reserved.