24 resultados para Non-Archimedean Real Closed Fields
Resumo:
A closed aquatic ecosystem (CAES) was developed to stud), the effects of microgravity on the function of closed ecosystems aboard the Chinese retrieved satellite and on the spacecraft SHENZHOU-II. These systems housed a small freshwater snail (Bulinus australianus) and an autotrophic green algae (Chlorella pyrenoidosa). The results of the test on the satellite were that the concentration of algae changed little, but that the snails died during the experiments. We then sought to optimize the function of the control system, the cultural conditions and the data acquisition system and carried out an experiment on the spacecraft SHENZHOU-II. Using various sensors to monitor the CAES, real-time data regarding the operation of the CAES in microgravity was acquired. In addition, all on-board Ig centrifuge was included to identify gravity-related factors. It was found that microgravity is the major factor affecting the operation of the CAES in space. The change in biomass of the primary producer during each day in microgravity was larger than that of the control groups. The mean biomass concentration per day in the microgravity group decreased, but that of the control groups increased for several days and then leveled off. Space effects on the biomass of a primary producer may be a result of microgravity effects leading to increasing metabolic rates of the consumer combined with decreases in photosynthesis. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
A novel fish chemokine receptor gene, chemokine (C-X-C motif) receptor 3 (CXCR3)-like was isolated from the grass carp Ctenopharyngodon idella , with its full-length genomic sequence. The cDNA of grass carp CXCR3-like (gcCXCR3-like) consists of 1261 bp with a 49bp 5'-UTR and a 189 bp 3'-UTR. An open reading frame of 1023 bp encodes a 341-amino acid peptide, with seven transmembrane helices. The deduced amino acid sequence showed the same sequence identities (37.8%) with its counterparts in goat and human. The gcCXCR3-like gene consists of two exons, with one intervening intron, spaced over approximately 2 kb of genomic sequence. Phylogenetic analyses clearly demonstrated that the gcCXCR3-like resembles the CXCR3s of other vertebrates. Real-time PCR analysis showed that gcCXCR3-like was expressed in all tested organs except heart and the expression level of gcCXCR3-like was highest in brain. Flow cytometric analyses showed the positive rate of labelled leukocytes from the healthy grass carp was 17.3%, and the labelled leukocytes were divided into three types by cell sorting. Immunohistochemical localization revealed that gcCXCR3-like expressed in whole brain regions including cerebel, diencephalon, medulla oblongata, optic lobe, and rhinencephalon, and that the labelled leukocytes are actually populations of monocyte and/or phagocyte, lymphocyte and the granulocyte. It is considered that fish CXCR expression and their function may need to be investigated in both nervous and immune systems. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Using remote sensing technique, we investigated real-time Nostoc sphaeroides Kiltz (Cyanobacterium) in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. The experiments had 1g centrifuges in space for control and ground control group experiments were also carried out in the same equipments and under the same controlled condition. The data about the population growth of Nostoc sp. of experiments and temperature changes of system were got from spacecraft every minute. From the data, we can find that population growth of Nostoc sp. in microgravity group was higher than that of other groups in space or on ground, even though both the control I g group in space and I g group on ground indicated same increasing characteristics in experiments. The growth rate of 1.4g group (centrifuged group on ground) was also promoted during experiment. The temperature changes of systems are also affected by gravity and light. Some aspects about those differences were discussed. From the discussion of these results during experiment, it can be found that gravity is the major factor to lead to these changes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Let Q be a conjugacy closed loop, and N(Q) its nucleus. Then Z(N(Q)) contains all associators of elements of Q. If in addition Q is diassociative (i.e., an extra loop), then all these associators have order 2. If Q is power-associative and |Q| is finite and relatively prime to 6, then Q is a group. If Q is a finite non-associative extra loop, then 16 ∣ |Q|.
Resumo:
Based on the phase-conjugate polarization interference between two-pathway excitations, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the V three-level sum-frequency polarization beat (SFPB) in attosecond scale. Novel interferometric oscillatory behavior is exposed in terms of radiation-radiation, radiation-matter, and matter-matter polarization beats. The phase-coherent control of the light beams in the SFPB is subtle. When the laser has broadband linewidth, the homodyne detected SFPB signal shows resonant-nonresonant cross correlation, a drastic difference for three Markovian stochastic fields, and the autocorrelation of the SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels. It has been also found that the asymmetric behaviors of the polarization beat signals due to the unbalanced controllable dispersion effects between the two arms of interferometer do not affect the overall accuracy in case using the SFPB to measure the Doppler-free energy-level sum of two excited states.
Resumo:
We study the non-Gaussianity induced by the Sunyaev-Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP. This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP-2MASS cross-correlations by a factor f(2), which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.
Resumo:
The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.
Resumo:
Penaeidin from Chinese shrimp (Fenneropenaeus chinensis) has proved to be one of the most important antimicrobial peptides in the bodies of animals. The relative quantitative real-time PCR method is developed to study through time, the mRNA expression profile of penaeidin in the muscle and haemocyte tissue of Chinese shrimp infected with vibrio (Vibrio anguillarum) and WSSV (white spot syndrome virus). Research results showed that the same pathogens infection experiments produced similar gene expression profile in different tissues while different expression profiles appeared in the same tissues infected by different exterior pathogens. In vibrio infection experiments, a "U" Re expression profile resulted. Expression levels of penaeidin increased and surpassed the non-stimulated level, indicating that penaeidin from Chinese shrimp has noticeable antimicrobial activities. In WSSV infection experiments, the expression profile appeared as an inverse "U" with the expression of penaeidin gradually decreasing to below baseline level after 24 h. The expression of antimicrobial peptides gene in mRNA level in response to virus infection in shrimp showed that international mechanisms of virus to haemocytes and microbial to haemocytes are completely different. Decline of penaeidins expression levels may be due to haemocytes being destroyed by WSSV or that the virus can inhibit the expression of penaeidins by yet undiscovered modes. The expression profiles of penaeidin in response to exterior pathogen and the difference of expression profiles between vibrio and WSSV infection provided some clues to further understanding the complex innate immune mechanism in shrimp.
Resumo:
激光成形过程中,对熔覆高度进行实时检测,从而实现熔覆高度闭环控制是成形高质量零件的保证。激光成形过程是一个多参数耦合的非线性过程,大量激光参数对成形熔覆表面质量具有重要影响。在分析激光参数对熔覆高度影响的基础上,建立利用激光工艺参数预测熔覆高度的误差反向传播(Backpropagation,BP)神经网络模型,完成了网络算法设计。通过激光成形试验采集样本,利用训练样本对所建立的网络进行训练,完成网络输入输出高度映射关系,并利用测试样本对所训练的网络进行检验。仿真试验表明,神经网络熔覆高度预测模型具有很高的精度,验证了该预测模型在理论和实践上的可行性与有效性。神经网络熔覆高度预测模型为实现激光加工过程熔覆高度实时预测与闭环控制打下基础,对提高成形产品质量具有重要意义。