28 resultados para Neutrino physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deconfinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. We include a perturbative QCD correction parameter alpha(s) in the CFL quark matter equation of states. It is shown that the CFL quark core with K-0 condensation forms in neutron star matter with the large value of alpha(s). If the small value of alpha(s) is taken, hyperons suppress the CFL quark phase and the HP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter alpha(s) or decreasing the bag constant B and the strange quark mass m(s) can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter alpha(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An internal target experiment at HIRFL-CSRm is planned for hadron physics, which focuses on hadron spectroscopy, polarized strangeness production and medium effect. A conceptual design of Hadron Physics Lanzhou Spectrometer (HPLUS) is discussed. Related computing framework involves event generation, simulation, reconstruction and final analysis. The R&D works on internal target facilities and sub-detectors are presented briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antikaon condensation and kaon and antikaon production in protoneutron stars are investigated in a chiral hadronic model (also referred to as the FST model in this paper). The effects of neutrino trapping on protoneutron stars are analyzed systematically. It is shown that neutrino trapping makes the critical density of K- condensation delay to higher density and (K) over bar (0) condensation not occur. The equation of state (EOS) of (proto)neutron star matter with neutrino trapping is stiffer than that without neutrino trapping, As a result, the maximum masses of (proto)neutron stars with neutrino trapping are larger than those without neutrino trapping. If hyperons are taken into account, antikaon does not form a condensate in (Proto)neutron stars. Meanwhile, the corresponding EOS becomes much softer, and the maximum masses of (proto)neutron stars are smaller than those without hyprons. Finally, our results illustrate that the Q values for K+ and K- production in (proto)neutron stars are not sensitive to neutrino trapping and inclusion of hyperons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the composition and the equation of state of the kaon condensed phase in neutrino-free and neutrino-trapped star matter within the framework of the Brueckner-Hartree-Fock approach with three-body forces. We find that neutrino trapping shifts the onset density of kaon condensation to a larger baryon density, and reduces considerably the kaon abundance. As a consequence, when kaons are allowed, the equation of state of neutrino-trapped star matter becomes stiffer than the one of neutrino free matter. The effects of different three-body forces are compared and discussed. Neutrino trapping turns out to weaken the role played by the symmetry energy in determining the composition of stellar matter, and thus reduces the difference between the results obtained by using different three-body forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Brueckner-Hartree-Fock framework, the equation of state and the properties of newborn neutron stars are investigated by adopting a realistic nucleon-nucleon interaction AV(18) supplemented with a microscopic three-body force or a phenomenological three-body force. The maximum mass of newborn neutron star and the proton fraction in the newborn beta-stable neutron-star matter are calculated. The neutrino-trapping and the three-body force effects are discussed, and the interplay between the effects of the trapped neutrino and the three-body force are especially explored. It is shown that neutrino trapping considerably affects the proton abundance and the equation of state of the newborn neutron star in both cases with and without the three-body forces. The effect of neutrino trapping remarkably enhances the proton abundance, and the contribution of the three-body force makes the equation of state of the newborn neutron star much stiffer at high densities and consequently increases the proton abundance strongly. The trapped neutrinos significantly reduce the influence of the three-body force on the proton abundance in newborn neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research activities at HIRFL-CSR cover the fields of the radio-biology, material science, atomic physics, and nuclear physics. This talk will mainly concentrate on the program on nuclear physics with the existing and planned experimental setups at HIRFL-CSR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commissioning of the cooler storage rings (CSR) was successful, and the facility provides new possibilities for atomic physics with highly charged ions. Bare carbon, argon ions, were successfully stored in the main ring CSRm, cooled by cold electron beam, and accelerated up to 1 GeV/u. Heavier ions as Xe44+ and Kr28+ were also successfully stored in the CSRs. Both of the rings are equipped with new generation of electron coolers which can provide different electron beam density distributions. Electron-ion interactions, high precision X-ray spectroscopy, complete kinematical measurements for relativistic ion-atom collisions will be performed at CSRs. Laser cooling of heavy ions are planned as well. The physics programs and the present status will be summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the commissioning of HIRFL-CSR, HIRFL can provide heavy ion beams with energy covering the range of several MeV/u to 1 GeV/u. In this talk, the experiments on nuclear physics at different energies to be carried out with different experimental setups at HIRFL will be introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has a long history in the R&D of catalysts and catalytic processes for petroleum and natural gas conversions in China. In this paper, results and features of some commercialized petrochemical catalysts and processes as well as newly developed processes for natural gas conversion in the pilot-plant stage are described. (C) 1999 Elsevier Science B.V. All rights reserved.