101 resultados para NUCLEON INTERACTION
Resumo:
We measured fragmentation cross sections produced using the primary beam of Kr-86 at 64 MeV/nucleon on Be-9 and Ta-181 targets. The cross sections were obtained by integrating the momentum distributions of isotopes with 25 <= Z <= 36 measured using the RIPS fragment separator at RIKEN. The cross-section ratios obtained with the Ta-181 and Be-9 targets depend on the fragment masses, contrary to the simple geometrical models. We compared the extracted cross sections to EPAX; an empirical parametrization of fragmentation cross sections. Predictions from current EPAX parametrization severely overestimate the production cross sections of very neutron-rich isotopes. Attempts to obtain another set of EPAX parameters specific to the reaction studied here to extrapolate the neutron-rich nuclei more accurately have not been very successful, suggesting that accurate predictions of production cross sections of nuclei far from the valley of stability require information of nuclear properties that are not present in EPAX.
Resumo:
The effects of momentum dependent interaction on the kinetic energy spectrum of the neutron-proton ratio r(b)(E-k) in the equation of state of nuclear matter was investigated. We found that the kinetic energy spectrum of the neutron-proton ratio r(b)(E-k) depends sensitively on the momentum dependent interaction and weakly on the in-medium nucleon-nucleon cross section and symmetry potential so that the r(b) (E-k) is a sensitive physical probe for extracting the information of momentum dependent interaction in the heavy ion collisions. At the same time, the comparing investigate between r(b)(E-k) for the neutron-rich collision system and the same mass stable collision system gives a important judgment for extracting the information of momentum dependent interaction in the heavy ion collisions.
Resumo:
In this work, we systematically study the interaction of D* and nucleon, which is stimulated by the observation of Lambda(c)(2940)(+) close to the threshold of D* p. Our numerical result obtained by the dynamical investigation indicates the existence of the D* N systems with J(P) = 1/2(+/-), 3/2(+/-), which not only provides valuable information to understand the underlying structure of Lambda(c)(2940)(+) but also improves our knowledge of the interaction of D* and nucleon. Additionally, the bottom partners of the D* N systems are predicted, which might be as one of the tasks in LHCb experiment.
Resumo:
The effect of momentum-dependent interaction on the kinetic energy spectrum of the neutron-proton ratio. <(n/p)(gas)>(b)(E-k) for Zn-64 + Zn-64 is studied. It is found that. <(n/p)(gas)>(b)(E-k) sensitively depends on the momentum-dependent interaction and weakly on the in- medium nucleon- nucleon cross section and symmetry potential. Therefore <(n/p)(gas)>(b)(E-k) is a possible probe for extracting information on the momentum-dependent interaction in heavy ion collisions.
Resumo:
Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of
Resumo:
There is increased interest in measuring kinetic rates, lifetimes, and rupture forces of single receptor/ligand bonds. Valuable insights have been obtained from previous experiments attempting such measurements. However, it remains difficult to know with sufficient certainty that single bonds were indeed measured. Using exemplifying data, evidence supporting single-bond observation is examined and caveats in the experimental design and data interpretation are identified. Critical issues preventing definitive proof and disproof of single-bond observation include complex binding schemes, multimeric interactions, clustering, and heterogeneous surfaces. It is concluded that no single criterion is sufficient to ensure that single bonds are actually observed. However, a cumulative body of evidence may provide reasonable confidence. 0 2002 Biomedical Engineering Society.
Resumo:
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.
Resumo:
A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically. Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of the expansion coefficient and the perturbation wave number, increases greatly independent of the 'stationary' turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.
Resumo:
A nanostructured surface layer was formed on an Inconel 600 plate by subjecting it to surface mechanical attrition treatment at room temperature. Transmission electron microscopy and high-resolution transmission electron microscopy of the treated surface layer were carried out to reveal the underlying grain refinement mechanism. Experimental observations showed that the strain-induced nanocrystallization in the current sample occurred via formation of mechanical microtwins and subsequent interaction of the microtwins with dislocations in the surface layer. The development of high-density dislocation arrays inside the twin-matrix lamellae provides precursors for grain boundaries that subdivide the nanometer-thick lamellae into equiaxed, nanometer-sized grains with random orientations.
Resumo:
Standing soliton was studied by numerical simulation of ifs governing equation, a cubic Schrodiger equation with a complex conjugate term, which was derived by Miles and was accepted. The value of linear damping in Miles equation was studied. Calculations showed that linear damping effects strongly on the formation of a standing soliton and Laedke and Spatschek stable condition is only a necessary condition, but not a sufficient one. The interaction of two standing solitons was simulated. Simulations showed that the interaction pattern depends on system parameters. Calculations for the different initial condition and its development indicated that a stable standing soliton can be fanned only for proper initial disturbance, otherwise the disturbance will disappear or develop into several solitons.
Resumo:
Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.
Resumo:
Imaging ellipsometry was combined with electrochemical methods for studying electrostatic interactions of protein and solid surfaces. The potential of zero charge for gold-coated silicon wafer/solution interfaces wad determined by AC impedance method. The potential of the gold-coated silicon wafer was controlled at the potential of zero charge, and the adsorption of fibrinogen on the potential-controlled and non-controlled surfaces was measured in real time at the same time by imaging ellipsometry The effect of electrostatic interaction was studied by comparing the difference between the potential of controlled adsorption and the Potential of noncontrolled adsorption. It was shown that the rate of fibrinogen adsorption on the potentiostatic surface was faster than that on the nonpotentiostatic surface. The electrostatic influence on fibrinogen adsorption on the gold-coated silicon wafer was weak, so the hydrophobic interaction should be the major affinity.
Resumo:
Liu Qingquan, Singh V.P