341 resultados para NEUTRON-SCATTERING
Resumo:
The cloud-point temperatures (T-c1's) of ti-ans-decahydronaphthalene (TD)/polystyrene (PS, M-w = 270 kg/mol) solutions were determined by fight scattering measurements over a range of temperatures (1-16 degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol% polymer). The system phase separates upon cooling and the T-c1 was found to increase with the rising pressure for the constant composition. In the absence of special effects this finding indicates positive excess volumes. The special attention was paid to the demixing temperatures as a function of the pressure for the different polymer solutions and the plots in the T-volume fraction plane and P-volume fraction plane. The cloud-point curves of polymer solutions under changing pressures were observed for different compositions, demonstrates that the TD/PS system exhibits UCST (phase separation upon cooling) behavior. With this data the phase diagrams under pressure were calculated applying the Sanchez-Lacombe (SL) lattice fluid theory. Furthermore, the cause of phase separation, i.e., the influence of Flory-Huggins (FH) interaction parameter under pressure was investigated.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.
Resumo:
The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.
Resumo:
The cloud-point temperatures (T-cl's) of poly(ethylene oxide) (PEO) and poly(ethylene oxide)-block-polydimethylsiloxane (P(EO-b-DMS)) homopolymer and block-oligomer mixtures were determined by turbidity measurements over a range of temperatures (105 to 130degrees), pressures (1 to 800 bar), and compositions (10-40 wt.-% PEO). The system phase separates upon cooling and T-cl was found to decrease with an increase in pressure for a constant composition. In the absence of special effects, this finding indicates negative excess volumes. Special attention was paid to the demixing temperatures as a function of the pressure for the different polymer mixtures and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of the polymer mixture under pressures were observed for different compositions. The Sanchez-Lacombe (SL) lattice fluid theory was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalphy of mixing, and the volume changes of mixing. The calculated results show that modified P(EO-b-DMS) scaling parameters with the new combining rules can describe the thermodynamics of the PEO/P(EO-b-DMS) system well with the SL theory.
Resumo:
The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]
Resumo:
In the framework of lattice fluid model, the Gibbs energy and equation of state are derived by introducing the energy (E-s) stored during flow for polymer blends under shear. From the calculation of the spinodal of poly(vinyl methyl ether) (PVME) and polystyrene (PS) mixtures, we have found the influence of E., an equation of state in pure component is inappreciable, but it is appreciable in the mixture. However, the effect of E, on phase separation behavior is extremely striking. In the calculation of spinodal for the PVME/PS system, a thin, long and banana miscibility gap generated by shear is seen beside the miscibility gap with lower critical solution temperature. Meanwhile, a binodal coalescence of upper and lower miscibility gaps is occurred. The three points of the three-phase equilibrium are forecasted. The shear rate dependence of cloud point temperature at a certain composition is discussed. The calculated results are acceptable compared with the experiment values obtained by Higgins et at. However, the maximum positive shift and the minimum negative shift of cloud point temperature guessed by Higgins are not obtained, Furthermore, the combining effects of pressure and shear on spinodal shift are predicted.
Resumo:
The rational synthesis and the structural and magnetic characterization of a nickel cluster are presented. The compound comprises a rhomblike Ni4O16 group encapsulated between two-heptadentate tungstoarsenate ligands [AsW9O34](9-). The crystal structure of K-10[Ni-4(H2O)(2)(AsW9O34)(2)](.)4H(2)O was solved in monoclinic, P2(1)/n symmetry, with a = 12.258(3) Angstrom, b = 21.232(4) Angstrom, c = 15.837(3) Angstrom, beta = 92.05(3)degrees, V = 4119.1(14) Angstrom(3), Z = 2, and R = 0.0862. The crystal structure of the Ni(II) derivative was compared with that of the Cu(II), Zn(II), Co(II) and Mn(II) derivatives. The Ni4O14(H2O)(2) unit in the compound shows no Jahn-Teller distortion. On the other hand, the Ni(II) derivative shows ferromagnetic exchange interactions within the Ni4O16 group (J = 7.8 cm(-1), J' = 13.7 cm(-1)) and an S = 4 ground state, the highest spin state reported in a heteropoly complex. Its redox electrochemistry has been studied in acid buffer solutions using cyclic voltammetry. It exhibited two steps of one-electron redox waves attributed to redox processes of the tungsten-oxo framework. The new catalyst showed an electrocatalytic effect on the reduction of NO2-.
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Resumo:
Flory solution theory modified by Hamada et al. (Macromolecules, 1980, 13, 729) was used to predict the miscibility of blends of poly(ethylene oxide) with poly(methyl methacrylate) (PEO-aPMMA) and with poly(vinyl acetate) (PEO-PVAc). Interaction parameters of a PEO-aPMMA blend with the weight ratio of PEO/aPMMA = 50/50 at the temperature range of 393-433 K and PEO-PVAc blends with different compositions and temperatures were calculated from the determined equation-of-state parameters based on Flory solution theory modified by Hamada ed al. Results show that interaction parameters of the PEO-aPMMA blend are negative and can be comparable with values obtained from neutron-scattering measurements by Ito et al. (Macromolecules, 1987, 20, 2213). Also, interaction parameters and excess volumes of PEO-PVAc blends are negative and increase with enhancing the content of PEO and the temperature. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.
Resumo:
AlGaN/GaN heterostructures have been irradiated by neutrons with different influences and characterized by means of temperature-dependent Hall measurements and Micro-Raman scattering techniques. It is found that the carrier mobility of two-dimensional electron gas (2DEG) is very sensitive to neutrons. At a low influence of 6.13 x 10(15) cm(-2), the carrier mobility drops sharply, while the sheet carrier density remains the same as that of an unirradiated sample. Moreover, even for a fluence of up to 3.66 x 10(16) cm(-2), the sheet carrier density shows only a slight drop. We attribute the degradation of the figure-of-merit (product of n(s) x mu) of 2DEG to the defects induced by neutron irradiation. Raman measurements show that neutron irradiation does not yield obvious change to the strain state of AlGaN/GaN heterostructures, which proves that degradation of sheet carrier density has no relation to strain relaxation in the present study. The increase of the product of n(s) x mu of 2DEG during rapid thermal annealing processes at relatively high temperature has been attributed to the activation of Ge-Ga transmuted from Ga and the recovery of displaced defects.
Resumo:
Single-neutron-transfer measurements using (p,d) reactions have been performed at 33 MeV per nucleon with proton-rich Ar-34 and neutron-rich Ar-46 beams in inverse kinematics. The extracted spectroscopic factors are compared to the large-basis shell-model calculations. Relatively weak quenching of the spectroscopic factors is observed between Ar-34 and Ar-46. The experimental results suggest that neutron correlations have a weak dependence on the asymmetry of the nucleus over this isotopic region. The present results are consistent with the systematics established from extensive studies of spectroscopic factors and dispersive optical-model analyses of Ca40-49 isotopes. They are, however, inconsistent with the trends obtained in knockout-reaction measurements.
Resumo:
Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model and the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross sections on pi(-)/pi(+) in the neutron-rich reaction of Ca-48 + Ca-48 at a beam energy of 400 MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Delta(1232), pi(-) and pi(+) production, as well as the value of pi(-)/pi(+).