229 resultados para NEUTRON DIFFRACTION
Resumo:
To resolve the diffraction problems of the pulsed wave field directly in the temporal domain, we extend the Rayleigh diffraction integrals to the temporal domain and then discuss the approximation condition of this diffraction formula. (C) 1997 Optical Society of America.
Resumo:
Neutron production from a thin deuterium-tritium (D-T) foil irradiated by two intense femtosecond laser pulses from opposite sides with zero phase difference is studied analytically and numerically. For the interaction of a laser pulse of amplitude a = 7, focal area 100 mu m(2) and areal density 4.4 x 10(18) cm(-2) with a D-T plasma foil, about 1.17 x 10(21) neutron s(-1) can be obtained, much more than from other methods. The profiles of the ion and electron densities are also calculated.
Resumo:
A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.
Resumo:
The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found.
Resumo:
This paper studies the correlation properties of the speckles in the deep Fresnel diffraction region produced by the scattering of rough self-affine fractal surfaces. The autocorrelation function of the speckle intensities is formulated by the combination of the light scattering theory of Kirchhoff approximation and the principles of speckle statistics. We propose a method for extracting the three surface parameters, i.e. the roughness w, the lateral correlation length xi and the roughness exponent alpha, from the autocorrelation functions of speckles. This method is verified by simulating the speckle intensities and calculating the speckle autocorrelation function. We also find the phenomenon that for rough surfaces with alpha = 1, the structure of the speckles resembles that of the surface heights, which results from the effect of the peak and the valley parts of the surface, acting as micro-lenses converging and diverging the light waves.
Resumo:
The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressed by an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phase retrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution of the phase retrieval is unstable. The numerical simulation is performed and the result validates that the solution of the phase retrieval is unstable.
Resumo:
The fractional Fourier transform of an object can be observed in the free-space Fresnel diffraction pattern of the object. (C) 1997 Optical Society of America
Resumo:
A scheme for the readout of a hologram recorded in bacteriorhodopsin film with high diffraction efficiency and intensity is suggested and demonstrated. Two weak coherent continuous beams function as the recording beams, and a strong light pulse is used to read the real-time hologram. The width of the readout light pulse is modulated to be short compared with the erase time of the reading beam; the time space between two adjacent pulses is ensured to be longer than the time the beams take to recover the hologram, and high diffraction efficiency and intensity (similar to 11 mW/cm(2)) can be obtained. (C) 1996 Optical Society of America.
Resumo:
In this paper the saturated diffraction efficiency has been optimized by considering the effect of the absorption of the recording light on a crossed-beam grating with 90 degrees recording geometry in Fe:LiNbO3 crystals. The dependence of saturated diffraction efficiency on the doping levels with a known oxidation-reduction state, as well as the dependence of saturated diffraction efficiency on oxidation-reduction state with known doping levels, has been investigated. Two competing effects on the saturated diffraction efficiency were discussed, and the intensity profile of the diffracted beam at the output boundary has also been investigated. The results show that the maximal saturated diffraction efficiency can be obtained in crystals with moderate doping levels and modest oxidation state. An experimental verification is performed and the results are consistent with those of the theoretical calculation.
Resumo:
We describe high-efficiency, high-dispersion reflection gratings fabricated in bulk fused Silica illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. Based on the phenomenon of total internal reflection, gratings with optimized profile parameters exhibit diffraction efficiencies of more than 90% under TM- and TE-polarized incident lights for 101-nm spectral bandwidths (1520-1620 nm) and can reach an efficiency of greater than 97% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, without coating of dielectric film layers, and independent of tooth shape, this new kind of grating should be of great interest for DWDM application. (C) 2005 Optical Society of America.
Resumo:
In order to measure the diffraction-limit wavefront, we present three types of common-path double-shearing interferometers based on the theory of double shearing. Two pairs of half-aperture or whole-aperture wedge plates are used to introduce opposite tilt to realize the double-shearing function. By comparing the fringe widths in two fields, the marginal wavefront aberration can be obtained. In the paper, we give three different configurations: half-aperture configuration, whole-field configuration and double-interferometer configuration. The half-aperture configuration has the features of high sensitivity, stabilization and easy alignment. For the whole-field configuration, the interference fringes are displayed in two whole fields. Consequently, the divergent or convergent characteristic and aberration types of a wavefront can be identified visually. The whole-field configuration can be changed to the double-interferometer configuration for continuous test. Both small and large wavefront aberrations can be measured by the double-interferometer configuration. The minimum detectable wavefront aberration (W-0)(min) comes to 0.03 lambda. Lastly, we present the experimental results for the three types of double-shearing interferometers.
Resumo:
We have studied the anisotropic diffraction properties of the stratified volume holographic gratings recorded in photorefractive media using the anisotropic coupled wave theory. It is shown that the diffraction efficiency of such system exhibit the uniform periodic Bragg selectivity properties. In addition the dependence of the stratified volume holographic optical elements (SVHOEs) diffraction properties on the buffer-layer thickness, grating-layer thickness, number of modulation layers, and total thickness of system are discussed in detail. (c) 2005 Elsevier GrnbH. All rights reserved.