140 resultados para Multivariate processes
Resumo:
EXPERIMENTS carried out using a split Hopkinson torsional bar have shown that only one shear band develops in specimens of hot rolled steel which break during testing. We observed, however, that in specimens which were not deformed to failure, several fine shear bands appeared. We believe that these formed during the loading cycle before the appearance of the final shear band and were not due to the effect of unloading. So we developed a numerical model to study the evolution of shear banding from several finite amplitude disturbances (FADs) in both temperature and strain rate. This numerical model reveals the detailed processes by which the FADs evolve into a fully developed shear band and suggests that beyond instability, the so-called shear banding process consists of two stages: inhomogeneous shearing and true shear-banding. The latter is characterized by the collapse of the stress and an abrupt increase of the local shear strain rate.
Resumo:
An overview on the onset of thermocapillary oscillatory convection in a floating half zone is provided, and it is a typical subject in the microgravity sciences related to the space materials science, especially the floating zone processing, and also to the microgravity fluid physics. The main interests are focused around the process for onset of oscillatory thermocapillary convection, which is known also as the bifurcation transition from quasi-steady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, such as the Marangoni number, Prandtl number, geometrical parameters, and heat transfer parameters. Recent studies show that, there exists the bifurcation transition from steady and axial symmetric convection to the steady and axial non-symmetric convection before the onset of oscillation in cases of small Prandtl number fluids and in cases of larger Prandtl number fluids of fat liquid bridge with small aspect ratio. The transition process is a strong non-linear process because the velocity deviation has the same order of magnitude as that of an average flow after the onset of oscillation, and unsteady 3-D numerical simulation is suitable to do in depth analysis on strong non-linear process, and leads generally to a better comparison with the experimental results.
Resumo:
To simulate fracture behaviors in concrete more realistically, a theoretical analysis on the potential question in the quasi-static method is presented, then a novel algorithm is proposed which takes into account the inertia effect due to unstable crack propagation and meanwhile requests much lower computational efforts than purely dynamic method. The inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, results may become questionable if a fracture process including unstable cracking is simulated by the quasi-static procedure excluding completely inertia effects. However, it requires much higher computational effort to simulate experiments with not very high loading rates by the dynamic method. In this investigation which can be taken as a natural continuation, the potential question of quasi-static method is analyzed based on the dynamic equations of motion. One solution to this question is the new algorithm mentioned above. Numerical examples are provided by the generalized beam (GB) lattice model to show both fracture processes under different loading rates and capability of the new algorithm.
Resumo:
Resonant interaction of an autoionising state with a strong laser field is considered and effects of second-order ionisation processes are investigated. The authors show that these processes play a very important role in laser-induced autoionisation (LIA). They drastically affect the lowest-order peaks in the photoelectron spectrum. In addition to these peaks, high-order peaks due to ejection of energetic photoelectrons appear. For the laser intensities of current interest, second-order peaks are much stronger than the original ones, an important result that, they believe, can be observed experimentally. Moreover, `peak switching', a general feature of above-threshold ionisation, is also manifest in the electron spectrum of LIA.
Resumo:
Several schemes for coherent quantum control of atomic and molecular processes have been proposed and investigated by using the techniques of adiabatic passage and ultrashort pulses, respectively. Some interesting results have been found.
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Rhesus macaques and stump-tailed macaques are sympatric in western Yunnan (China), coexisting or occupying habitats that show little difference. This paper tests hypotheses based on theoretical expectation from the differing biomechanical demands of terrestrial and arboreal quadrupedalism in stump-tailed macaques and rhesus macaques, respectively. Individuals of these two macaque taxa were markedly separated by the first two principal components and discriminant analyses based on 18 variables of the upper limb. The rhesus macaques appear to be more adapted for arboreal quadruped habits because of elongation of the clavicle and forearm, a larger humeral head and greater midshaft sagittal diameters of the radius and ulna.
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.
Resumo:
In this paper, recent progresses in optical analysis of dislocation-related physical properties in GaN-based epilayers are surveyed with a brief review. The influence of dislocations on both near-band edge emission and yellow luminescence (YL) is examined either in a statistical way as a function of dislocation density or focused on individual dislocation lines with a high spatial resolution. Threading dislocations may introduce non-radiative recombination centers and enhance YL, but their effects are affected by the structural and chemical environment. The minority carrier diffusion length may be dependent on either dislocation density or impurity doping as confirmed by the result of photovoltaic spectra. The in situ optical monitoring of the strain evolution process is employed during GaN heteroepitaxy using an AIN interlayer. A typical transition of strain from compression to tension is observed and its correlation with the reduction and inclination of threading dislocation lines is revealed. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The authors report a simple but effective way to improve the surface morphology of stacked 1.3 mu m InAs/GaAs quantum dot (QD) active regions grown by metal-organic chemical vapor deposition (MOCVD), in which GaAs middle spacer and top separate confining heterostructure (SCH) layers are deposited at a low temperature of 560 degrees C to suppress postgrowth annealing effect that can blueshift emission wavelength of QDs. By introducing annealing processes just after depositing the GaAs spacer layers, the authors demonstrate that the surface morphology of the top GaAs SCH layer can be dramatically improved. For a model structure of five-layer QDs, the surface roughness with the introduced annealing processes (IAPs) is reduced to about 1.3 nm (5x5 mu m(2) area), much less than 4.2 nm without the IAPs. Furthermore, photoluminescence measurements show that inserting the annealing steps does not induce any changes in emission wavelength. This dramatic improvement in surface morphology results from the improved GaAs spacer surfaces due to the IAPs. The technique reported here has important implications for realizing stacked 1.3 mu m InAs/GaAs QD lasers based on MOCVD.