17 resultados para Modelo bio-mecânico


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pyrolytic and kinetic characteristics of Enteromorpha prolifera from the Yellow Sea were evaluated at heating rates of 10, 20 and 50 degrees C min(-1), respectively. The results indicated that three stages appeared during pyrolysis; dehydration, primary devolatilization and residual decomposition. Differences in the heating rates resulted in considerable differences in the pyrolysis of E. prolifera. Specifically, the increase of heating rates resulted in shifting of the initial temperature, peak temperature and the maximum weight loss to a higher value. The average activation energy of E. prolifera was 228.1 kJ mol(-1), the pre-exponential factors ranged from 49.93 to 63.29 and the reaction orders ranged from 2.2 to 3.7. In addition, there were kinetic compensation effects between the pre-exponential factors and the activation energy. Finally, the minimum activation energy was obtained when a heating rate of 20 degrees C min(-1) was used. (C) 2009 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.