20 resultados para Model information


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grey system theory studies the uncertainty of small sample size problems. This paper using grey system theory in the deformation monitoring field, based on analysis of present grey forecast models, developed the spatial multi-point model. By using residual modification, the spatial multi-point residual model eras developed in further study. Then, combined with the sedimentation data of Xiaolangdi Multipurpose Dam, the results are compared and analyzed, the conclusion has been made and the advantages of the residual spatial multi-point model has been proved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RecA of Escherichia coli and its active nucleoprotein filaments with DNA are important for the genomic integrity and the genetic diversity. The formation of the DNA-RecA nucleoprotein filaments is a complex multiple-step process and can be affected by many factors. In this work, the effects of poly-L-lysine (PLL) on the DNA-RecA nucleoprotein filaments are investigated in vitro by agarose gel electrophoresis and atomic force microscopy (AFM). The observed morphologies vary with the concentration, the length, and the addition order of PLL. These distinctions provide information for the conformation change of DNA and the binding sites of RecA protein in the formation process of nucleoprotein filaments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society