28 resultados para Mineralogy, Determinative.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis mainly concentrates on the geochronology, prtrology, elemental geochemistry and Sr-Nd-Pb-Hf isotopic geochemistry of the volcanic rocks in north Da’Hinggan Mountain. By analyzing the data obtained in this study and data from other people, this thesis explored the age distribution, petrology and mineralogy and geochemistry characteristics of the volcanic rocks in north Da’Hinggan Mountain. Furthermore, this thesis speculated upon the source characteristics of these volcanic rocks and their implications for the tectonic evolution and crust accretion. According to the twenty Ar-Ar ages, four zircon U-Pb SHRIMP ages and two Zircon U-Pb LA-ICP-MS ages, the duration of the eruption of the Late Mesozoic volcanic rocks in north Da’Hing Mountain was about 160Ma-106Ma. Most of these volcanic rocks belong to early Cretaceous and the late Jurassic volcanic rocks are only restricted in Manzhouli. The bulk of the late Mesozoic volcanic rocks are high-K calc-alkaline rocks. Only a small portion of these volcanic rocks are shoshonites. These rocks are mainly intermediate or acid and the basic rocks usually have higher alkaline contents. Rock types are very complex in this region. These volcanic rocks have a large TiO2 variation and the Al2O3 and alkaline contents are high. From the point of mineralogy, the plagioclases in these volcanic rocks are oligoclases, andesines and labradorites, and the labradorites are more common. Most pyroxenes in these volcanic rocks are augites which belong to clinopyroxene. The source of the Late Mesozoic volcanic rocks was an enriched lithospheric mantle. When the magma en route to the surface it was contaminated by crust material slightly and had some fractional crystallization. These rocks which mainly belong to high-K calc-alkaline series were one of the results of postorogenic tectonic-magmatic activities. The upwelling in late Mesozoic supplied heat to melt the enriched lithospheric mantle which was resulted from the subduction of paleo-Asian Ocean and/or Mengol-Okhotsk ocean. These late Mesozoic volcanic rocks are also important to the upper crustal accretion of north Da’Hinggan Mountain since the late Mesozoic. These volcanics and the contemporary emplacement of granites and the basaltic underplating in combination fulfilled the crust accretion history in north Da’Hinggan Mountain in Late Mesozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luo Ning ( Mineralogy, Petrology, Deposit Mineralogy) Directed by Fu Liyun With the increase of the level of exploration and development, North China field, as one of the maturing fields in the east, has gradually turned their prospecting targets to frontiers such as deep zones, lithologic hydrocarbon reservoirs, low permeable layers, special lithostromes, etc, which propose new challenges to mating technique of exploration engineering. In it, the special lithostrome of clay carbonate in Shu-Lu cave in Middle Flank exploration area locates in Es_3 generating rock. The area distribution is large, formation thickness is over 100 meters, the oil accumulation condition is excellent, prognostic reserves is over 80,000,000 tons, but how to effectively stimulate the special low permeable and fractured reservoir has become the bottle neck problem of stimulation and stable yields. In this thesis, through comprehensive evaluation and analysis of lithology, lithomechanics, hydrocarbon reservoir characteristics, the characteristics of fluid flow through porous medium and the stimulation measures in the past, we acquire new cognition of clay carbonate reservoirs, in addition, the research and application of first hydraulic fracturing has gained positive effect and formed commensurable comprehensive reservoir evaluation technique and mating engineering technique of hydraulic fracturing. The main cognitions and achievements are as follows: 1.Study of geological information such as lithololy analysis and nuclear magnetic logging, etc, indicates that clay carbonate formation of Shu-Lu cave is anisotropic, low permeable with high shale content, whose accumulation space gives priority to microcracks. 2.The analysis of lithomechanics of clay carbonate indicates that the hardness is moderate, Young’s modulus is between that of sandstone and limestone, clay carbonate presents plastic property and its breakdown pressure is high because of the deep buried depth. 3.The analysis of the drillstem test curves indicates that the flow and build-up pressure curve of clay carbonate of Shu-Lu cave mainly has three types: formation contamination block-up type, low permeable type, formation energy accumulation slowness type; the reservoir characteristics presents double porosity media, radial compounding, uniform flow vertical fracture, isotropy, moniliform reservoir type. The target well Jingu 3 belongs to moniliform reservoir type. 4.Through recognition and re-evaluation of the treatment effect and technologic limitations of acidizing, acid fracturing and gelled acidizing in the past, based on the sufficient survey and study of hydraulic fracturing home and abroad, combined with comprehensive formation study of target well, we launched the study of the optimization of hydraulic fracturing technique, forming the principal clue and commensurable mating technology aimed at clay carbonate formation, whose targets are preventing leak off, preventing sand bridge, preventing embedment, controlling fracture height, forming long fracture. 5. Recognition of stimulation effect evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the issue of geological hazard evaluation(GHE), taking remote sensing and GIS systems as experimental environment, assisting with some programming development, this thesis combines multi-knowledges of geo-hazard mechanism, statistic learning, remote sensing (RS), high-spectral recognition, spatial analysis, digital photogrammetry as well as mineralogy, and selects geo-hazard samples from Hong Kong and Three Parallel River region as experimental data, to study two kinds of core questions of GHE, geo-hazard information acquiring and evaluation model. In the aspect of landslide information acquiring by RS, three detailed topics are presented, image enhance for visual interpretation, automatic recognition of landslide as well as quantitative mineral mapping. As to the evaluation model, the latest and powerful data mining method, support vector machine (SVM), is introduced to GHE field, and a serious of comparing experiments are carried out to verify its feasibility and efficiency. Furthermore, this paper proposes a method to forecast the distribution of landslides if rainfall in future is known baseing on historical rainfall and corresponding landslide susceptibility map. The details are as following: (a) Remote sensing image enhancing methods for geo-hazard visual interpretation. The effect of visual interpretation is determined by RS data and image enhancing method, for which the most effective and regular technique is image merge between high-spatial image and multi-spectral image, but there are few researches concerning the merging methods of geo-hazard recognition. By the comparing experimental of six mainstream merging methods and combination of different remote sensing data source, this thesis presents merits of each method ,and qualitatively analyzes the effect of spatial resolution, spectral resolution and time phase on merging image. (b) Automatic recognition of shallow landslide by RS image. The inventory of landslide is the base of landslide forecast and landslide study. If persistent collecting of landslide events, updating the geo-hazard inventory in time, and promoting prediction model incessantly, the accuracy of forecast would be boosted step by step. RS technique is a feasible method to obtain landslide information, which is determined by the feature of geo-hazard distribution. An automatic hierarchical approach is proposed to identify shallow landslides in vegetable region by the combination of multi-spectral RS imagery and DEM derivatives, and the experiment is also drilled to inspect its efficiency. (c) Hazard-causing factors obtaining. Accurate environmental factors are the key to analyze and predict the risk of regional geological hazard. As to predict huge debris flow, the main challenge is still to determine the startup material and its volume in debris flow source region. Exerting the merits of various RS technique, this thesis presents the methods to obtain two important hazard-causing factors, DEM and alteration mineral, and through spatial analysis, finds the relationship between hydrothermal clay alteration minerals and geo-hazards in the arid-hot valleys of Three Parallel Rivers region. (d) Applying support vector machine (SVM) to landslide susceptibility mapping. Introduce the latest and powerful statistical learning theory, SVM, to RGHE. SVM that proved an efficient statistic learning method can deal with two-class and one-class samples, with feature avoiding produce ‘pseudo’ samples. 55 years historical samples in a natural terrain of Hong Kong are used to assess this method, whose susceptibility maps obtained by one-class SVM and two-class SVM are compared to that obtained by logistic regression method. It can conclude that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, only requires failed cases, has an advantage over the other two methods as only "failed" case information is usually available in landslide susceptibility mapping. (e) Predicting the distribution of rainfall-induced landslides by time-series analysis. Rainfall is the most dominating factor to bring in landslides. More than 90% losing and casualty by landslides is introduced by rainfall, so predicting landslide sites under certain rainfall is an important geological evaluating issue. With full considering the contribution of stable factors (landslide susceptibility map) and dynamic factors (rainfall), the time-series linear regression analysis between rainfall and landslide risk mapis presented, and experiments based on true samples prove that this method is perfect in natural region of Hong Kong. The following 4 practicable or original findings are obtained: 1) The RS ways to enhance geo-hazards image, automatic recognize shallow landslides, obtain DEM and mineral are studied, and the detailed operating steps are given through examples. The conclusion is practical strongly. 2) The explorative researching about relationship between geo-hazards and alteration mineral in arid-hot valley of Jinshajiang river is presented. Based on standard USGS mineral spectrum, the distribution of hydrothermal alteration mineral is mapped by SAM method. Through statistic analysis between debris flows and hazard-causing factors, the strong correlation between debris flows and clay minerals is found and validated. 3) Applying SVM theory (especially one-class SVM theory) to the landslide susceptibility mapping and system evaluation for its performance is also carried out, which proves that advantages of SVM in this field. 4) Establishing time-serial prediction method for rainfall induced landslide distribution. In a natural study area, the distribution of landslides induced by a storm is predicted successfully under a real maximum 24h rainfall based on the regression between 4 historical storms and corresponding landslides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluvio-lacustrine sequence in the Nihewan Basin is an important archive of late Pliocene-Pleistocene climate and environment changes in temperate northern China, which provides excellent sources of early human settlements in high latitude East Asia. The recent years have witnessed a considerable progress in the paleomagnetic dating of its stratigraphy, which has notably increased our understanding of a series of important issues such as the early human occupation in the Old World, the infilling history of the Nihewan Basin, and the chronological sequence of the Nihewan faunas. Up to now, the long-term paleoenvironmental changes directly retrieved from this basin, which might influence the evolution and expansion of early humans in the Nihewan Basin, are still poorly constrained, although several paleoclimatic records have been retrieved from this area. In this study, a combined mineral-magnetic and geochemical investigation was carried out on the fluvio-lacustrine sequence from the Dachangliang section at the eastern margin of the basin in order to reveal its rock magnetic and environmental magnetic characteristics and its implications for early human evolution in East Asia. The major findings and conclusions are listed as the following: First, there is an increased cooling coupled with an intensified aridification recorded in the fluvio-lacustrine sequence of the Dachangliang section. The cooling is related to an up-section decrease in propensity to chemical weathering as inferred from an increase in low-field susceptibility after cycling to 700 °C. Close to 700 °C, reacting chlorite is providing the iron source for newly formed very fine-grained ferrimagnetic minerals which enhances the susceptibility signal. The reactivity of chlorite after annealing at temperatures above 600 °C is documented with X-ray diffraction. Second, degrees of chemical weathering in the Nihewan Basin are further estimated by clay mineralogy (i.e. chlorite and illite contents and chlorite/illite ratio) and a series of major element proxies (i.e. Na2O/Al2O3 versus K2O/Al2O3 diagram, Al2O3-(CaO + Na2O)-K2O ternary diagram (A-CN-K), chemical index of alteration (CIA), (CaO + Na2O + MgO)/TiO2, (CaO + Na2O + MgO + K2O)/(TiO2 + Al2O3), CaO/Al2O3 and CaO/TiO2). The up-section decrease in propensity to chemical weathering suggested by the aforementioned rock mangetic measurement is further confirmed by these geochemical analyses. Combining the chemical weathering records from the Nihewan Basin, Chinese Loess Plateau, South China Sea and eastern China, we find that the consecutive decreasing trend in chemical weathering intensity during the late Cenozoic is ubiquitous across China. This pattern may result from a long-term decreasing East Asian summer monsoon and increasing East Asian winter monsoon, and thus a consecutive increasing of aridification and cooling in Asia during the Quaternary. Furthermore, the chemical weathering intensity increased from South China to North China during the Quaternary, in line with the decreasing East Asian summer monsoon and increasing East Asian winter monsoon and thus the gradually intensified aridification and cooling from South China to North China. Third, a combined mineral-magnetic and geochemical investigation provides evidences that the large-amplitude alterations of concentration of magnetic minerals mainly result from preservation/dissolution cycles of detrital magnetic minerals in alternately oxic and anoxic depositional environments. The preservation/dissolution model implies that the high-magnetic and low-magnetic cycles of this sedimentary sequence represent glacial and interglacial climate cycles, respectively. This contribute significnatly to our understanding of the link between climate and magnetic properties. Finally, the paleoclimatic implications of these rock magnetic and geochemical characteristics significantly increase our understanding of the general setting of early humans in high northern latitude in East Asia. We propose that the cold and dry climate may have contributed significantly to the expansion and adaptation of early humans, rather than bringing hardship, as is often thought. The relationship between magnetic properties and climate possibly provides valuable information on the climatic context of the Paleolithic sites in the basin, especially whether the occupation occurred during an interglacial or glacial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xuanlong-type Hematite Deposits, distributed in Xuanhua and Longguang area in Hebei province and hosted in the Changchengian Chuanlinggou Formation of Mesoproterozoic, is an oldest depositional iron deposit characterized by oolitic and stromatolitic hematite and siderite. This thesis made an systematic study of its sedimentary, sedimentology, geochemistry, mineralogy and sequence stratigraphy. Based on above, the mechanism and background of biomineralization are discussed. There are four types of hematite ores including stromatolite, algal oolite, algal pisolite and oncolite. Based on detailed study on ore texture, the authors think both algal oolite and algal pisolite ores are organic texture ores, and related to the role of microorganisms. The process of blue-green algae and bacteria in the Xuanlong basin absorbing, adsorbing and sticking iron to build up stromatolite is the formation process of Xuanlong-type hematite deposit. Researches on ore-bearing series and ore geochemistry show that the enrichment of elements is closely related to the microorganism activities. Fe_2O_3 is enriched in dark laminations of stromatolite with much organic matter and SiO_2 in light laminations with detrital matters. The trace elements, especially biogenic elements, including V, P, Mo are enriched in ores but relatively low in country rocks. The paper also demonstrates on the sequence stratigraphy of hematite deposits and five sequences and twelve systems are divided. The characteristics of sequence stratigraphy show that the deposit-forming location has obviously selectivity and always exists under a transgressive setting. The oxygen isotope in hematite is about -2.2~5.7‰, which is similar to that of Hamlys iron formation of Australia but more negative than that of volcanic or hydrothermal iron deposits characterized by high positive values. The calculation by the result of oxygen isotope analysis shows that the temperature of ancient sea water was 48.53℃. The negative value of carbon isotope from siderite indicates its biogenic carbon source. Meanwhile, the occurrence of seismite in the ore-beds, which indicates the formation of hematite deposits is associated with frequent shock caused by structural movement such as distal volcano or ocean-bottom earthquake etc, show the occurrence of hematite deposits is eventual, not gradual. In shorts, Xuanlong-type hematite deposits were the result of interaction among geological setting of semi-isolated Xuanglong basin, favorable hot and humid climate condition, abundant iron source, microorganism such as algae and bateria as well as the fluctuation of the sea level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of coesite-bearing eclogites in Dabie and Sulu region over ten years ago, the Dabie collisional orogen has been the "hot-spot" across the world. While many great progresses have been made for the last decade in the researches on the Dabie and Sulu UHP metamorphic rocks in the following fields, such as, petrology, mineralogy, isotope chronology, and geochemistry, the study of the structural geology on the Dabie orogen is still in great need. Thrust and nappe tectonics commonly developed in any collisional orogenic belt during the syncollisional process of the orogen. It is the same as the Dabic collisional orogen is concerned. The paper put much stress on the thrust and nappe tectonics in the Dabic orogenic belt, which have been seldom systematically studied before. The geometric features including the division and the spatial distribution of various thrust and nappe tectonics in the Dabie orogen have been first studied, which is followed by the detailed studies on their kinematic characteristics in different scales varying from regional tectonics to microtectonics. In the thesis, new deformation ages have been obtained by the isotopic methods of ~(40)Ar-~(39)Ar, Sm-Nd and Rb-Sr minerals-whole rock isochrons on the mylonites formed in three ductile shear zones which bounded three different major nappes in the Dabie collisional orogenic belt. And the petrological, geochemical characteristics of some metamorphic rocks as well as the geotectonics of their protoliths, which have also deformed in the ductile shear zone, are analyzed and discussed. In the paper, twelve nappes in the Dabie orogen are first divided, which are bounded by various important NWW or NW-strike faults and three NNE-strike faults. They are Shangcheng Nappe, Huoshan Nappe, Yuexi Nappe, Yingshanjian-Hengzhong Nappe, Huangzhen Nappe, Xishui-Huangmei Nappe, Zhoudang Nappe, Suhe-Huwan Nappe, Xinxian Nappe, Hong'an Nappe, Mulan Nappe and Hhuangpi-Susong Nappe. In the Dabie orogen, three types of thrust and nappe tectonics belonging to two stages have been confirmed. They are: (1) early stage ductile thrust -nappe tectonics which movement direction was top-to-the-south; (2) late stage brittle to ductile-brittle thrust-nappe tectonics which are characterized by double-vergence movement, including top-to-the-north and top-to-the-south; (3) the third type also belongs to the late stage which also characterized by double-vergence movement, including top-to-the-east and top-to-the-west, and related to the strike-slip movement. The deformation ages of both Wuhe-Shuihou ductile shear zone and Taihu-Mamiao ductile shear zone have been dated by ~(40)Ar-~(39)Ar method. ~(40)Ar/~(39)Ar plateau ages of biotite and mica from the mylonites in these two shear zones are 219.57Ma and 229.12Ma. The plateau ages record the time of ductile deformation of the ductile shear zones, which made the concerned minerals of the mylonites exhume from amphibolite facies to the middle-upper crustal conditions by the early stage ductile thrust-nappe tectonics. The mineral isochons of Sm-Nd and Rb-Sr dating on the same mylonite sample of the metamafic rocks are 156.5Ma and 124.56Ma respectively. The two isochron ages suggest that the mylonitic rock strongly deformed in the amphilbolite facies at 156Ma and then exhumed to the upper crustal green schist condition at 124Ma with the activities of the Quiliping-Changlinggang ductile shear zone which bounded to the southen edge of Xinxian Nappe. Studies of the petrological and geochemical characteristics of some meta-mafic rocks and discussion on the geotectonics of their protoliths indicate that their protoliths were developped in an island arc or back-arc basin or active continental margin in which calc-alkline basalts formed. This means that arc-accretion orogeny had evolved in the margins of North china plate and/or Yangtze plate before these two plates directly collided with each other during the evolution process of Dabie orogen. Three-stage evolution of the thrust-nappe tectonics in Dabie collisional orogen has been induced based on the above-mentioned studies and previous work of others. And a possible 3-stage exhumation model (Thrust-Positive Flower Structure Model) has also been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-cracks appeared between the boundaries of different minerals of rocks during heating process, because of different thermal expansion coefficients of minerals, this phenomenon is referred as thermal cracking of rocks. The transport property of rocks was changed greatly due to the thermal cracking induced micro-cracks network, for example, the permeability of carbonate increases about 10 times when the temperature arise from room temperature to 110~120℃. Thermal cracking of rocks is a new research field of rock physics, which related closely to rock mechanics, mineralogy as well as experimental technology. The thermal cracking experiments of various rocks were performed, the rock macroscopic properties such as porosity, permeability, velocities of elastic waves in rocks were obtained as a function of temperature of heating process, and the microscopic structures of rocks were observed by using Scanning Electro-Microscope (SEM). The mechanism and the theoretical model of thermal cracking of rocks are given at present paper. Finally, the potential implication of rock thermal cracking to petroleum industry is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1970s, igneous reservoirs such as Shang741, Bin674 and Luol51 have been found in Jiyang depression, which are enrichment and heavy-producing. Showing good prospect of exploration and development, igneous reservoirs have been the main part of increasing reserves and production in Shengli oilfield. As fracture igneous reservoir being an extraordinary complex concealed reservoir and showing heavy heterogeneity in spatial distribution, the study of recognition, prediction, formation mechanism and the law of distribution of fracture is essential to develop the reservoir. Guided by multiple discipline theory such as sedimentology, geophysics, mineralogy, petroleum geology, structural geology and reservoir engineering, a set of theories and methods of recognition and prediction of fractured igneous rock reservoir are formed in this paper. Rock data, three-dimensional seismic data, log data, borehole log data, testing data and production data are combined in these methods by the means of computer. Based on the research of igneous rock petrography and reservoir formation mechanism, emphasized on the assessment and forecast of igneous rock reservoir, aimed at establishing a nonhomogeneity quantification model of fractured igneous rock reservoir, the creativity on the fracture recognition, prediction and formation mechanism are achieved. The research result is applied to Jiyang depression, suggestion of exploration and development for fractured igneous rock reservoir is supplied and some great achievement and favourable economic effect are achieved. The main achievements are gained as follows: 1. The main facies models of igneous rock reservoir in JiYang depression are summarized. Based on data and techniques of seism, well log and logging,started from the research of single well rock facies, proceeded by seismic and log facies research, from point to line and line to face, the regional igneous facies models are established. And hypabyssal intrusion allgovite facies model, explosion volcaniclastic rock facies model and overfall basaltic rocks facies model are the main facies models of igneous rock reservoir in JiYang depression. 2. Four nonhomogenous reservoir models of igneous reservoirs are established, which is the base of fracture prediction and recognition. According to characteristics of igneous petrology and spatial types of reservoir, igneous reservoirs of Jiyang depression are divided into four categories: fractured irruptive rock reservoir, fracture-pore thermocontact metamorphic rock and irruptive rock compound reservoir, pore volcanic debris cone reservoir and fracture-pore overfall basaltic rock reservoir. The spatial distribution of each model's reservoir has its features. And reservoirs can be divided into primary ones and secondary ones, whose mechanism of formation and laws of distribution are studied in this paper. 3. Eight geologic factors which dominate igneous reservoirs are presented. The eight geologic factors which dominates igneous reservoirs are igneous facies, epigenetic tectonics deformation, fracture motion, intensity of intrusive effect and adjoining-rock characters, thermo-contact metamorphic rock facies, specific volcano-tectonic position, magmatic cyclicity and epigenetic diagenetic evolution. The interaction of the eight factors forms the four types nonhomogenous reservoir models of igneous reservoirs in Jiyang depression. And igneous facies and fracture motion are the most important and primary factors. 4. Identification patterns of seismic, well log and logging facies of igneous rocks are established. Igneous rocks of Jiyang depression show typical reflecting features on seismic profile. Tabular reflection seismic facies, arc reflection seismic facies and hummocky or mushroom reflection seismic facies are the three main facies. Logging response features of basic basalt and diabase are shown as typical "three low and two high", which means low natural gamma value, low interval transit-time, low neutron porosity, high resistivity and high density. Volcaniclastic rocks show "two high and three low"-high neutron porosity, high interval transit-time, low density, low-resistance and low natural gamma value. Thermo-contact metamorphic rocks surrounding to diabase show "four high and two low" on log data, which is high natural gamma value, high self-potential anomaly, high neutron porosity, high interval transit-time and low density and low-resistance. Based on seismic, well log and logging data, spatial shape of Shang 741 igneous rock is described. 5. The methods of fracture prediction and recognition for fractured igneous reservoir are summarized. Adopting FMI image log and nuclear magnetic resonance log to quantitative analysis of fractured igneous reservoir and according to formation mechanism and shape of fracture, various fractures are recognized, such as high-angle fracture, low-angle fracture, vertical fracture, reticulated fracture, induced fracture, infilling fracture and corrosion vug. Shang 741 intrusive rock reservoir can be divided into pore-vug compound type, pore fracture type, micro-pore and micro-fracture type. Physical properties parameters of the reservoir are computed and single-well fracture model and reservoir parameters model are established. 6. Various comprehensive methods of fracture prediction and recognition for fractured igneous reservoir are put forward. Adopting three-element (igneous facies, fracture motion and rock bending) geologic comprehensive reservoir evaluation technique and deep-shallow unconventional laterolog constrained inversion technique, lateral prediction of fractured reservoir such as Shang 741 is taken and nonhomogeneity quantification models of reservoirs are established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to know better about the Phanerozoic lithosphere thinning process of Sino-Korea Plate, four Cretaceous intrusion complexes and their ultramafic xenoliths are investigated by this thesis, which are located in Laiwu, Shandong Province, Eastern China, a region far away from plate margin. The four complexes, Kuanshan, Jiaoyu, Jingniushan and Tietonggou, intruded into Archaeozoic granite gneiss and Paleozoic carbonate rocks with scam iron ore at their contact zone. The four complexes can be divided into two magma series, abyssal rocks for the early and hypabyssal rocks for the later. K-Ar dating show that the abyssal rocks intrusion began with 120 ±2 Ma and the hypabyssal rocks intruded about 113 Ma. Abyssal rocks, mainly made up of augite diorites, amphibole diorites and gabbros for the lesser, are chemically characterized with high-Mg (Mg#>0.5) high-K calcalklic rock, which are depleted with Nb, Ta and Ti related to LILE and extremely enriched with Sr and Pb. Comparatively, augite diorites are the most LREE enriched in abyssal rocks, and they show no Eu abnorrnity or weak positive Eu abnormity. Gabbros show the least LREE enrichment with a strong Eu abnormity relatively. In (~(87)Sr/~(86)Sr)_1 -ε Nd(T) diagram, the abyssal rocks show a mixing trend , a rapid change in ε Nd(T) with a relatively small change in (~(87)Sr/~(86)Sr)_1. Low radiogenic Sr and Pb composition with high radiogeic Nd composition indicate that the mixing processes happened in lower crust Melt-rock interactions in lower crust might be the most possible processes to produce these high-Mg and high-K calcalklic magmas. Hypabyssal rocks, mainly made up of granite porphyry and dioritic porphrite, show much higher ε Nd(T) than abyssal rocks. Granite porphyry are distinct with an adakite geochemical characteristics, high (La/Yb)_N, Sr/Y and low Rb/Sr ratio. The adakitic granite porphyry indicates a new lower crust produced by underplating within plate. Ultramafic xenoliths had been found only in augite diorites and amphibole diorites. Field investigations show that ultramafic xenoliths in augite diorites had been inherited from amphibole diorites, so ultramafic xenoliths had been only entrained by hydrous dioritic magma. Ultramafic xenoliths are mainly made up of dunite and harzburgite, orthopyroxenite and bistangite are the lessor. Coarse olivines in dunite often show many chromite exsolution lamellae. Opx in orthopyroxenite often show dense chromite exsolution lamellae. The presence of exsolution minerals indicates that ultramafic xenoliths had cooled before entraining. Metasomatism phenomenons are popular in dunite and harzburgite xenoliths, including two kinds of assemblage, cpx+phlogapite and opx+pl. The first metasomatism assemblage indicates an ancient enrichment. Rb-Sr dating of xenoliths shows that the ancient enrichment happened in 223 ± 7Ma. The second metasomatism assemblage indicates a recent, relatively not deep melt-rock interaction, which might be related with the genesis of the high-Mg high-K calcalklic rocks. Mineralogy and geochemistry indicate that these ultramafic xenoliths might sample the crust-mante transition zone (or the base of lower crust, moho). Investigation of high-Mg intrusions and their ultramafic xenoliths in Laiwu indicate that the thinning processes of Sino-Korea Plate can be divided into two stages. The first stage is lithosphere mantle thinning with crust thickening by underplating in lower crust. The second stage is that the thickened lower crust delaminated into the underlying mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the principle and methods of carbonate sedimentology and reservoir geology, and guided by the theories of carbonate reservoir geology, the palaeokarst of Ordovician carbonate rocks in Tarim Basin has been comprehensively studied with multiple methods from different branches of geology. It is indicated that the features and distribution of palaeokarstification have developed in Ordovician carbonates. The controlling of karstification to Ordovician carbonate reservoirs has been discussed. Regional distribution of carbonate reservoirs controlled by karstification has been predicted within this basin. The main consents and conclusions of the this dissertation is as follows: Nine key indicators to the recognition of palaeokarst are proposed in terms of careful observation upon the well cores, lithological and geochemical analyses, and drilling and logging responses to the karst caves and fractures. The time and environment of cave filling are documented from careful research of lithofacies, mineralogy, and geochemistry of the physical and chemical fillings within karst caves. The caves in Ordovician carbonates were filled in Early Carboniferous in Lunnan area. The muddy filling in upper caves was deposited under subaerial fresh-water setting, while the muddy filling in lower caves was formed in the mixed water body of fresh-water and dominated sea water. Although most chemical fillings are suggested being precipated in the burial diagenetic environment after karstification but mineralogic and geochemical characteristics of some chemical fillings indicates they formed in meteoric environment during the karstification. It is obvious that the palaeokarst has been zoned in vertical profile. It can be divided into four units from top to bottom: surface karst, vadose karst, phreatic and tranquil flow zones. Between two types of limestone karst and dolostone karst are firstly differentiated in Tarim Basin, based on the comparison of features of each karst zone in limestone and dolostone regions. In Tabei area, the lowest depth of karstification is approximately 300 m below the Upper Ordovician unconformity interface, while the bottom depth of karstification in Tazhong area ranges commonly from 300 to 400 m, in rare cases may be up to 750 m below the upper Ordovician unconformity interface. In Lunnan and Tazhong areas, the palaeokarst morphology and the surface hydrosystem are firstly reconstructed based on the top of carboniferous "Shuangfeng limestone bed (Double-Peaks limestone)" as basal. According to the palaeomorphologic feature, karst topography can be divided into three units: karst upland, karst slope, and karst valley. Vadose zone was well developed in karst upland, and it can be found in a quite depth. Both vadose and phreatic zones were well developed in karst slope and upstream valley. In downstream valley, the karstification is not strong, the vadose and phreatic zones are thin in thickness. In Tazhong and Yingmaili areas, karstification is also developed in relict carbonate palaeo-hills which existed as isolated blocks admits clastic strata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baoyintu Group, lies in Wulate-zhongqi, Inner Mongolia, is a set of medium-grade metamorphic rock series which undergoes complex deformations. It consists of pelite schist, greenschist, plagioclase amphibolite quartzite and marble. The pelite schist is the main rock type and contains the classic medium pressure metamorphic minerals. The author divided Baoyintu group into five assemblages, investigated the rock association and plotted geological section of each assemblage in this area. Based on the systemically study of structural geology, petrology, geochemistry and mineralogy, the author reconstructs the protolith, sedimentary environment and tectonic evolution, discusses the mesoscopic and microscopic structure, metamorphism, geochemistry characters and the correlation between porphyroblast growth and deformation-metamorphism. There are three phase deformations in the research area: the earliest one occurred as the Baoyintu group deformed and metamorphosed and the main structure pattern is tight fold within layers during the Dl, large scale reversed fold and two phase faults (Fl fault and F2 fault) during the D2, and superimposed fold and F3 fault during D3. The F3 trancate the Wenduermian group of Silurian. The second and third phase deformation are relate to the orogenic event of late period of early Paleozoic. According to the rock association ,characteristics of the rocks and research of geochemistry, we get some information of the sedimentary environment and tectonic evolution of Baoyintu group. The source rocks are a set of terrigenous deposits-volcanic formation which reflect the history of the tectonic setting: stable- active-restable. And there are two sedimentary cycle from first assemblage to fifth assemblage: from first assemblage to fourth assemblage is a course of progression and the fifth assemblage is a start of regression. We also get the information of the P-T-t path by studying petrographies and calculating temperature and pressure. The path is not similiat to any classic type. And the interpretation is different from the traditional opinion. The P-T-t path reflects the dynamic course of convergence and uplift, magma underplating, back-arc extension and convergence of continental margin. Applying the theory of deformation partitioning to this area, the author discuss the relationship between deformation and porphyroblast growth, and get the conclusion of the sequence of deformation and metamorphism. At the first time we measure the distribution of chemical composition within the porphyroblast by XRF, confirm the theory of deformation partitioning quantitative and get new understanding about growth phase of porphyroblast and growth mode of porphyroblast: porphyroblast grow in the manner as "rose flower", the growth is controlled by the deformation. The elements distribution in porphyroblast reflects the growth manner and indicate history of metamorphism and deformation. So, we can deduce the metmorphism and deformation from the elements distribution in porphyroblast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dabie Mountains is a collisional orogenic belt between the North China and Yantze Continental plates. It is the eastern elongation of the Tongbai and Qingling orogen, and is truncated at its east end by the Tan-Lu fault. Jadeite-quartzite belt occurs in the eastern margin of UHPMB from the Dabie Mountains. Geochemical features indicate that the protoliths of the jadeite-quartzite and associated eclogite to be supracrustal rocks. The occurrence of micro-inclusions of coesite in jadeite and garnet confirmed that the continental crust can be subducted to great depth (8 0-100km) and then exhumed rapidly with its UHP mineral signature fairly preserved. Therefore, study of UHP jadeite-quartzite provides important information on subduction of continental crustal rocks and their exhumation histories, as well as the dynamics of plate tectonic processes at convergent margins. The purpose of this paper is to investigate the presence of hydrous component in the jadeite-quartzite belt, significant natural variations in the hydrous component content of UHP minerals and to discuss the role of water in petrology, geochemistry and micro-tectonic. On the basis of our previous studies, some new geological evidences have been found in the jadeite-quartzite belt by researches on petrography, mineralogy, micro-tectonic, hydrous component content of UHP minerals and combined with the study on rheology of materials using microprob, ER, TEM. By research and analysis of these phenomenona, the results obtained are as follows: 1. The existence of fluid during ultra-high pressure metamorphic process. Jadeites, omphacite, garnet, rutile, coesite and quartz from the jadeite-quartzite belt have been investigated by Fourier transform infrared spectrometer and TEM. Results show that all of these minerals contain trace amount of water which occur as hydroxyl and free-water in these minerals. The two-type hydrous components in UHP minerals are indicated stable in the mantle-depth. The results demonstrated that these ultra-high pressure metamorphic minerals, which were derived from continental crust protoliths, they could bring water into the mantle depth during the ultra-high pressure metamorphism. The clusters of water molecules within garnet are very important evidence of the existence of fluid during ultra-high pressure metamorphic process. It indicated that the metamorphic system was not "dry"during the ultra-high pressure stage. 2.The distribution of hydrous component in UHP minerals of jadeite-quartzite. The systematic distribution of hydrous components in UHP minerals are a strong indication that water in these minerals, are controlled by some factors and that the observed variations are not of a random nature. The distribution and concentration of hydrous component is not only correlated with composition of minerals, but also a function of geological environment. Therefore, the hydrous component in the minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transported water molecules with decreasing pressure during their exhumation. And these water molecules can not only promote the deformation of jadeite through hydrolytic weakening, but also may be the part of the retrograde metamorphic fluid. 3.The role of water in the deformed UHP minerals. The jadeite, omphacite, garnet are strong elongated deformation in the jadeite-quartzite from the Dabie Mountains. They are (1) they are developed strong plastic deformation; (2) developed dislocation loop, dislocation wall; (3) the existence of clusters of water molecular in the garnet; and (4) the evolution of micero-tectonic from clusters of water molecular-dislocation loop in omphacite. That indicated that the water weakening controlled the mechanism of deformed minerals. Because the data presented here are not only the existence of clusters of water molecular in the garnet, but also developed strong elongation, high density of dislocation and high aspect ratios, adding microprobe data demonstrate the studied garnet crystals no compositional zoning. Therefore, this indicates that the diffusion process of the grain boundary mobility did not take place in these garnets. On the basis of above features, we consider that it can only be explained by plastic deformation of the garnets. The clusters of water molecules present in garnet was directly associated with mechanical weakening and inducing in plastic deformation of garnet by glissile dislocations. Investigate of LPO, strain analysis, TEM indicated that these clinopyroxenes developed strong elongation, high aspect ratios, and developed dislocation loop, dislocation wall and free dislocations. These indicated that the deformation mechanism of the clinopyroxenes plastically from the Dabie Mountains is dominant dislocation creep under the condition of the UHP metamorphic conditions. There are some bubbles with dislocation loops attached to them in the omphacite crystal. The bubbles attached to the dislocation loops sometimes form a string of bubble beads and some loops are often connected to one another via a common bubble. The water present in omphacite was directly associated with hydrolitic weakening and inducing in plastic deformation of omphacite by dislocations. The role of water in brittle deformation. Using microscopy, deformation has been identified as plastic deformation and brittle deformation in UHP minerals from the Dabie Mountains. The study of micro-tectonic on these minerals shows that the brittle deformation within UHP minerals was related to local stresses. The brittle deformation is interpreted as being caused by an interaction of high fluid pressure, volume changes. The hydroxyl within UHP minerals transported water molecules with decreasing pressure due to their exhumation. However, under eclogite facies conditions, the litho-static pressure is extreme, but a high fluid pressure will reduce the effective stress and make brittle deformation possible. The role of water in prograde metamorphism. Geochemical research on jadeite-quartzite and associated eclogite show that the protoliths of these rocks are supracrustal rocks. With increasing of temperature and pressure, the chlorite, biotite, muscovite was dehydrous reaction and released hydrous component during the subduction of continental lithosphere. The supracrustal rocks were transformed UHP rocks and formed UHP facies assemblage promotely by water introduction, and was retained in UHP minerals as hydrous component. The water within UHP minerals may be one of the retrograde metamorphic fluids. Petrological research on UHP rocks of jadeite-quartzite belt shows that there was existence of local fluids during early retrograde metamorphism. That are: (1) coronal textures and symplectite around relict UHP minerls crystals formed from UHP minerls by hydration reactions; (2) coronal textures of albite around ruitle; and (3) micro-fractures in jadeite or garnet were filled symplectite of Amp + PI + Mt. That indicated that the reactions of early retrograde metamorphism dependent on fluid introduction. These fluids not only promoted retrograde reaction of UHP minerals, but also were facilitate to diffuse intergranular and promote growth in minerals. Therefore, the hydrous component in the UHP minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transport water molecules with decreasing pressure and may take part in the retrograde metamorphic fluid during their exhumation. 7. The role of water in geochemistry of UHP jadeite-quartzite. Geochemical research show that there are major, trace and rare earth element geochemical variations in the jadeite-quartzite from the Changpu district of Dabie Mountains, during retrograde metamorphic processes from the jadeite-quartzite--gneiss. The elements such as SiO_2、FeO、Ba、Zr、Ga、La、Ce、PTN Nd% Sm and Eu increase gradually from the jadeite-quartzite to retrograded jadeite-quartzite and to gneiss, whilst TiO_2. Na_2CK Fe2O_3、Rb、Y、Nb、Gd、Tb、Dy、Ho、Er、Tm、Yb decrease gradually. And its fO_2 keep nearly unchanged during early retrograde metamorphism, but decreased obviously during later retrograde metamorphism. These indicate that such changes are not only controlled by element transformation between mineralogical phases, but also closely relative to fluid-rock interaction in the decompression retrograde metamorphic processes.