168 resultados para Meteorological conditions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer characteristics of China no. 3 kerosene were investigated experimentally and analytically under conditions relevant to a regenerative cooling system for scramjet applications. A test facility developed for the present study can handle kerosene in a temperature range of 300-1000 K, a pressure range of 2.6-5 MPa, and a mass How rate range of 10-100 g/s. In addition, the test section was uniquely designed such that both the wall temperature and the bulk fuel temperature were measured at the same location along the flowpath. The measured temperature distributions were then used to analytically deduce the local heat transfer characteristics. A 10-component kerosene surrogate was proposed and employed to calculate the fuel thermodynamic and transport properties that were required in the heat transfer analysis. Results revealed drastic changes in the fuel flow properties and heat transfer characteristics when kerosene approached its critical state. Convective heat transfer enhancement was also found as kerosene became supercritical. The heat transfer correlation in the relatively low-fuel-temperature region yielded a similar result to other commonly used jet fuels, such as JP-7 and JP-8, at compressed liquid states. In the high-fuel-temperature region, near and beyond the critical temperature, heat transfer enhancement was observed; hence, the associated correlation showed a more significant Reynolds number dependency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rarefied gas effects on several configurations are investigated under hypersonic flow conditions using the direct simulation Mont Carlo method. It is found that the Knudsen number, the Mach number, and the angle of attack all play a mixed role in the aerodynamics of a flat plate. The ratio of lift to drag decreases as the Knudsen number increases. Studies on 3D delta wings show that the ratio of lift to drag could be increased by decreasing the wing thickness and/or by increasing the wing span. It is also found that the waveriders could produce larger ratio of lift to drag as compared with the delta wing having the same length, wing span, and cross section area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical 2D method for simulation of two-phase flows including phase change under microgravity conditions is presented in this paper, with a level set method being coupled with the moving mesh method in the double-staggered grid systems. When the grid lines bend very much in a curvilinear grid, great errors may be generated by using the collocated grid or the staggered grid. So the double-staggered grid was adopted in this paper. The level set method is used to track the liquid-vapor interface. The numerical analysis is fulfilled by solving the Navier-Stokes equations using the SIMPLER method, and the surface tension force is modeled by a continuum surface force approximation. A comparison of the numerical results obtained with different numerical strategies shows that the double-staggered grid moving-mesh method presented in this paper is more accurate than that used previously in the collocated grid system. Based on the method presented in this paper, the condensation of a single bubble in the cold water under different level of gravity is simulated. The results show that the condensation process under the normal gravity condition is different from the condensation process under microgravity conditions. The whole condensation time is much longer under the normal gravity than under the microgravity conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flammability limits for flames propagating in a rich propane/air mixture under gravity conditions appeared to be 6.3% C3H8 for downward propagation and 9.2% C3H8 for upward propagation. Different limits might be explained by the action of preferential diffusion of the deficient reactant (Le < 1) on the limit flames, which are in different states of instability. In one of the previous studies, the flammability limits under microgtravity conditions were found to be between the upward and downward limits obtained in a standard flammability tube under normal gravity conditions. It was found in those experiments that there are two limits under microgravity conditions: one indicated by visible flame propagation and another indicated by an increase of pressure without observed flame propagation. These limits were found to be far behind the limit for downward-propagating flame at 1 g (6.3% C3H8) and close to the limit for upward-propagating flame at 1 g (9.2% C3H8). It was decided in the present work to apply a special schlieren system and instant temperature measuring system for drop tower experiments to observe combustion development during propagation of the flame front. A small cubic closed vessel (inner side, 9 cm 9 cm 9 cm) with schlieren quality glass windows were used to study limit flames under gravity and microgravity conditions. Flame development in rich limit mixtures, not visible in previous experiments under microgravity conditions for strait photography, was identified with the use of the schlieren method and instant temperature measuring system. It was found in experiments in a small vessel that there is practically no difference in flammability limits under gravity and microgravity conditions. In this paper, the mechanism of flame propagation under these different conditions is systematically studied and compared and limit burning velocity is estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of the energy interval between the intercombination line ( 1s2p(P-3(1))-> 1s(2)) and the resonance line ( 1s2p(P-1(1))-> 1s(2)) of He-like aluminium with plasma density and temperature is investigated. Since such energy interval is equivalent to the exchange energy of the state 1s2p(P-3(1)), we consider the dependence of this energy shift on the plasma environment. It was found that the shifts of exchange energy increase ( decrease) with the increase of electron density ( electron temperature), and the shifts of exchange energy become more sensitive to the electron density as the electron temperature decreases, i. e. in the strongly coupled plasma regime. An approximately linear relation is found between the shifts of exchange energy and the electron density. The results show that dense plasma effects are very important for the simulation of the spectral fine structure. The relative shifts between the intercombination ( 1s2p(P-3(1))-> 1s(2)) and the resonance line ( 1s2p(P-1(1))-> 1s(2)) are discussed for diagnostic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, by adopting the ion sphere model, the self-consistent. field method is used with the Poisson-Boltzmann equation and the Dirac equation to calculate the ground-state energies of H-like Ti at a plasma electron density from 10(22) cm(-3) to 10(24) cm(-3) and the electron temperature from 100 eV to 3600 eV. The ground-state energy shifts of H-like Ti show different trends with the electron density and the electron temperature. It is shown that the energy shifts increase with the increase in the electron density and decrease with the increase in the electron temperature. The energy shifts are sensitive to the electron density, but only sensitive to the low electron temperature. In addition, an accurately fitting formula is obtained to fast estimate the ground-state energies of H-like Ti. Such fitted formula can also be used to estimate the critical electron density of pressure ionization for the ground state of H-like Ti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the recording conditions, including the widths of the recording beams, the width ratio of the recording beams, and the recording angles, on the properties of crossed-beam photorefractive gratings in doubly doped LiNbO3 crystals is studied. A theoretical model that combines the band transport model with two-dimensional coupled-wave theory is proposed. The numerical calculations of the space-charge field, the intensity profiles of the diffracted beam, and the diffraction efficiency are presented. (C) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anisotropic Bragg diffraction of the volume holographic gratings in photorefractive crystals are investigated based on the model of anisotropic coupled-wave theory. The effect of the initial intensity ratio and the recording angles of the two recording waves on the anisotropic Bragg diffraction properties is discussed. It is shown that both the ratio of the initial intensity and the incident angles of the recording waves are selective action for the anisotropic Bragg diffraction efficiency of the volume holographic gratings, while these two recording conditions are not selective action for the isotropic Bragg diffraction. Furthermore, the Bragg phase matching condition of anisotropic diffraction is analyzed when the recording angles change. (C) 2006 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broad bandwidth group match conditions are reported for a noncollinear type I optical parametric process. The theoretical calculations corresponding to two special situations in practice were made, respectively, which are in accordance with the published experimental results. Furthermore, we provide a method to not only achieve maximal parametric bandwidth output but also match the group velocities between three waves. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the 2 x 2 (electric field) cross-spectral density matrix, a model for an electromagnetic J(0)-correlated Schell-model beam is given that is a generalization of the scalar J(0)-correlated Schell-model beam. The conditions that the matrix for the source to generate an electromagnetic J(0)-correlated Schell-model beam are obtained. The condition for the source to generate a scalar J(0)-correlated Schell-model beam can be considered as a special case. (C) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects in as-grown U3+ : CaF2 crystals grown with or without PbF2 as an oxygen scavenger were studied using Raman spectra, thermoluminescence glow curves, and additional absorption (AA) spectra induced by heating and gamma-irradiation. The effects of heating and irradiation on as-grown U3+: CaF2 crystals are similar, accompanied by the elimination of H-type centers and production of F-type centers. U3+ is demonstrated to act as an electron donor in the CaF2 lattice, which is oxidized to the tetravalent form by thermal activation or gamma-irradiation. In the absence of PbF(2)as an oxygen scavenger, the as-grown U3+:CaF2 crystals contain many more lattice defects in terms of both quantity and type, due to the presence of O2- impurities. Some of these defects can recombine with each other in the process of heating and gamma-irradiation. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of ZrO2, HfO2 and TiO2 were deposited on kinds of substrates by electron beam evaporation (EB), ion assisted deposition (IAD) and dual ion beam sputtering (DIBS). Then some of them were annealed at different temperatures. X-ray diffraction (XRD) was applied to determine the crystalline phase and the grain size of these films, and the results revealed that their microstructures strongly depended on the deposition conditions such as substrate, deposition temperature, deposition method and annealing temperature. Theory of crystal growth and migratory diffusion were applied to explain the difference of crystalline structures between these thin films deposited and treated under various conditions. (c) 2007 Elsevier B.V. All rights reserved.