69 resultados para Mau Us Desert
Resumo:
A Gram-negative, non-motile, rod-shaped bacterium, designated strain AKS 1 T, was isolated from a desert soil sample collected from Alkesu, Xin.lang Province, China. A taxonomic study, including phylogenetic analysis based on 16S rRNA gene sequences and p
Resumo:
A Gram-negative, rod-shaped, non-motile, non-spore-forming bacterium, designated strain HR2(T) was isolated from a soil sample from the Talklimaken Desert in Xinjiang Province, China. Strain HR2(T) grew optimally at pH 7.0-8.0 and 30-37 degrees C in the presence of 0-1% (w/v) NaCl. An analysis of 16S rRNA gene sequences revealed that strain HR2(T) fell within the radiation of the genus Pseudomonas, the highest level of similarity being found with respect to Pseudomonas luteola IAM 13000(T) (97.5%); the levels of sequence similarity with respect to other recognized Pseudomonas species were < 96.4%. DNA-DNA hybridization showed that the genetic relatedness between strain HR2(T) and P. luteola IAM 13000(T) was 53.2%. The G + C content of the genomic DNA of strain HR2(T) was 55.2 mol%. The major fatty acids were 18: 1, summed feature 3 and 16:0. The hydroxylated fatty acids 10:0 3-OH, 12:0 3-OH and 12:0 2-OH were also present. The data obtained in this polyphasic study indicated that this isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas duriflava sp. nov. is proposed, The type strain is HR2(T) (=KCTC 221129(T) =CGMCC 1.6858(T)).
Resumo:
A taxonomic study was performed on strain HR1(T), which was isolated from a desert soil sample collected from Xinjiang Province (China). Cells were aerobic, Gram-positive-staining, pink-pigmented, sporulating rods with a single lateral flagellum. The orga
Resumo:
Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxiclase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxiclase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxiclase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the Survival of M. vaginatus. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Practical testing of the feasibility of cyanobacterial inoculation to speed up the recovery of biological soil crusts in the field was conducted in this experiment. Results showed that cyanobacterial and algal cover climbed up to 48.5% and a total of 14 cyanobacterial and algal species were identified at the termination of inoculation experiment; biological crusts' thickness, compressive and chlorophyll a content increased with inoculation time among 3 years; moss species appeared in the second year; cyanobacterial inoculation increased organic carbon and total nitrogen of the soil; total salt, calcium carbonate and electrical conductivity in the soil also increased after inoculation. Diverse vascular plant communities composed of 10 and 9 species are established by cyanobacterial inoculation on the windward and leeward surface of the dunes, respectively, after 3 years. The Simpson index for the above two communities are 0.842 and 0.852, while the Shannon-Weiner index are 2.097 and 2.053, respectively. In conclusion, we suggest that cyanobacterial inoculation would be a suitable and effective technique to recover biological soil crusts, and may further restore the ecological system. (C) 2008 Published by Elsevier Ltd.