210 resultados para MOMENTUM
Resumo:
We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.
Resumo:
We analyze in this paper the general covariant energy-momentum tensor of the gravitational system in general five-dimensional cosmological brane-world models. Then through calculating this energy-momentum for the cosmological generalization of the Randall-Sundrum model, which includes the original RS model as the static limit, we are able to show that the weakness of the gravitation on the "visible" brane is a general feature of this model. This is the origin of the gauge hierarchy from a gravitational point of view. Our results are also consistent with the fact that a gravitational system has vanishing total energy.
Resumo:
We investigate the conservation law of energy momentum for Randall-Sundrum models by the general displacement transform. The energy momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is epsilon = epsilon(0)e(-3 vertical bar y vertical bar).
Resumo:
In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of the inflationary RS model are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
Resumo:
We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio
Resumo:
Influences of the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependant interaction (MDI) on the isotope scaling are investigated by using the isospin-dependent quantum molecular dynamics model (IQMD). The results show that both the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependent interaction affect the isoscaling parameters appreciably and independently. The influence caused by the isospin dependence of two-body collision is relatively larger than that from the MDI in the mean field. Aiming at exploring the implication of isoscaling behaviour, which the statistical equilibrium in the reaction is reached, the statistical properties in the mass distribution and the kinetic energy distribution of the fragments simulated by IQMD are presented.
Resumo:
The influences of the isospin dependent in-medium nucleon-nucleon cross section and the MomentumDependent Interaction(MDI) on the isotope scaling have been investigated within the Isospin dependent Quantum Molecular Dynamics Model(IQMD). The results show that both the isospin dependent in-medium nucleon-nucleon cross section and the momentum interaction reduce the isoscaling parameter a appreciably, which means they decrease the dependence of yield ratios of two systems on the isospin difference between two systems.
Resumo:
Using the momentum- and isospin-dependent Boltmann-Uehling-Uhlenbeck (BUU) model, we investigate the transverse flow and balance energy in two isotopic colliding systems Ca-48+Fe-58 and Cr-48+Ni-58 by adopting different symmetry potentials. By comparing the results between the two colliding systems, we find that the difference between the balance energies of two isotopic systems can be considered as a sensitive probe to the density dependence of symmetry energy.
Resumo:
An isospin-dependent quantum molecular dynamical model (IQMD) is developed, with the isospin degree of freedom in the momentum-dependent interaction(MDI) included in IQMD, to obtain an isospin- and momentum-dependent interaction (IMDI) in IQMD. We investigate the effect of IMDI on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the IMDI induces the significant reductions in the isospin fractionation ratio for all of beam energies, impact parameters, neutron-proton ratios and mass number of colliding systems. However, the strong dependence of isospin fractionation ratio on the symmetrical potential is preserved, with the isospin degree of freedom included in the MDI, i.e. the isospin fractionation ratio is still a good probe for extracting the information about the equation of state of isospin asymmetrical nuclear matter.
Resumo:
State-selective single electron capture cross sections are measured by recoil ion momentum spectroscopy technique for He2+ on He at 30 keV incident energy. The cross sections for capture into ground and excited states are obtained and compared to classical model calculations as well as to the quantum mechanical calculations. The experimental results are in good agreement with quantum mechanical results.