63 resultados para MICROBIAL CONSORTIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aerobic degradation of hexachlorobenzene (HCB) by an acclimated microbial community which isolated from a contaminated site and acclimated in our laboratory was investigated. The enriched microbial community was capable of biodegrading HCB when cultivated in minimal salts medium and supplied HCB as the sole carbon source. The efficiencies of microbial community in the degradation of HCB under different pH and temperatures were examined. The phylogenetic analysis for the nearly complete sequences of 16S rDNA demonstrated that the bacteria assemblage in the microbial community was dominated by Azospirillum and Alcaligenes groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexachlorobenzene (HCB) is a chlorinated aromatic hydrocarbon that was widely used for seed dressing in prevention of fungal growth on crops, and also as a component of fireworks, ammunition, and synthetic rubbers. Because of its resistance to degradation and mobility, HCB is widely distributed throughout the environment and is accumulated through food chains in different ecosystems. In this study, a preliminary investigation was carried out on the bioaccumulation and the toxic effects of HCB in the microbial (protozoan in particular) communities in the Fuhe River, Wuhan, a water body receiving industrial wastewaters containing HCB and other pollutants, using the standardized polyurethane foam units (PFU) method. Field samples were taken from eight stations established along the Fuhe River in January and August 2006. The concentration ratios of HCB in microbial communities and in water were 9.66-18.64, and the microbial communities accumulated 13.29-56.88 mu g/L of HCB in January and 0.82-10.25 mu g/L HCB in August. Correlation analysis showed a negative correlation between the HCB contents in the microbial assemblage, and the number of species and the diversity index of the protozoan communities. This study demonstrated the applicability of the PFU method in monitoring the effects of HCB on the level of microbial communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to imitate the restoration succession process of natural water ecosystem, a laboratory microcosm system of constant-flow-restoration was designed and established. A eutrophycation lake, Lake Donghu, was selected as the subject investigated. Six sampling stations were set on the lake, among which the water of station IV was natural clean water, and others were polluted with different degrees. Polyurethane foam unit microbial communities, which had colonized in the stations for a month, were collected from these stations and placed in their respective microcosms, using clean water of station IV to gradually replace the water of these microcosms. In this process, the healthy community in clean water continuously replaced the damaged communities in polluted water, the restoration succession of the damaged communities was characterized by weekly determination of several functional and structural community parameters, including species number (S), diversity index (DI), community pollution value (CPV), heterotrophy index (HI), and similarity coefficient. Cluster analysis based on similarity coefficient was used to compare the succession discrepancies of these microbial communities from different stations. The ecological succession of microbial communities during restoration was investigated by the variable patterns of these parameters, and based on which, the restoration standards of these polluted stations were suggested in an ecological sense. That was, while being restored, the water of station 0 (supereutrophycation) should be substituted with natural clean water by 95%; station I (eutrophycation), more than 90%; station II (eutrophycation), more than 85%; station III (eutrophycation), about 85%; station V (mesoetitrophycation), less than 50%. The effects of the structural and functional parameters in monitoring and assessing ecological restoration are analyzed and compared. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing recognition that protozoa is very useful in monitoring and evaluating water ecological healthy and quality. In order to study the relationship between structure and function of protozoan communities and water qualities, six sampling stations were set on Lake Donghu, a hypereutrophic subtropical Chinese lake. Microbial communities and protists sampling from the six stations was conducted by PFU (Polyurethane foam unit) method. Species number (S), diversity index (DI), percentage of phytomastigophra, community pollution value (CPV), community similarity and heterophy index (HI) were mensurated. The measured indicators of water quality included total phosphorus (TP), dissolved oxygen (DO), Chemical oxygen demand (COD), NH4 (+), NO2 (-) and NO3-. Every month water samples from stations I, II, III, IV were chemically analyzed for a whole year, Among the chemically analyzed stations, station I was the most heavily polluted, station II was the next, stations III and IV had similar pollution degrees. The variable tendencies of COD, TP, NH3, NO2-, NO3-, and DO during the year was approximately coincident among the six stations. Analysis from the community parameters showed that the pollution of station 0 was much more serious than others, and station V was the most slight. Of the community parameters, CPV and HI were sensitive in reflecting the variables of the water quality. Community similarity index was also sensitive in dividing water qualities and the water quality status of different stations could be correctly classified by the cluster analysis. DI could reflect the tendency of water quality gradient, species number and percentage of Phytomastigophora was not obvious in indicating the water quality gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang,and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme. At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria, thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined with the national standard biomonitoring method (polyurethane foam units method), calorimetry was applied to study the metabolic activities of PFU microbial communities in fresh water to determine the effects of anthropotgenic stresses on the activity of the microbial community. Comparisons were made at four sampling stations with different eutrophic status in Lake Donghu. Water quality variables, species number of protozoa, abundances of microorganisms, biomass, heterotrophy indexes and diversity indexes are reported. The heat rate-time curves of the native and concentrated PFU microbial communities were determined at 28 degrees C. Growth rate, measured maximum power output and total heat were calculated from the heat rate-time curves. The values of metabolic variables are higher at the more eutrophic stations, which suggests that organic pollution increases the activity of PFU microbial communities. The metabolic variables are in good agreement with chemical and biotic variables. And calorimetry will be useful for biomonitoring of the PFU microbial community. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a wetland system in treating lead (Pb)/zinc (Zn) mine drainage was evaluated by using the polyurethane foam unit (PFU) microbial community (method), which has been adopted by China as a standardized procedure for monitoring water quality. The wetland system consisted of four cells with three dominant plants: Typha latifolia, Phragmites australis and Paspalum distichum. Physicochemical characteristics [pH, EC, content of total suspended solid (TSS) and metals (Pb, Zn, Cd, and Cu)] and PFU microbial community in water samples had been investigated from seven sampling sites. The results indicated that the concentrations of Pb, Zn, Cd, Cu, and TSS in the mine drainage were gradually reduced from the inlet to the outlet of the wetland system and 99%, 98%, 75%, 83%, and 68% of these metals and TSS respectively, had been reduced in concentration after the drainage passed through the wetland system. A total of 105 protozoan species were identified, the number of protozoa species and the diversity index (DI) gradually increased, while the heterotrophic index (HI) gradually decreased from the inlet to the outlet of the wetland system. The results indicated that DI, HI, and total number species of protozoa could be used as biological indicators indicating the improvement of water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used polyurethane foam units (PFUs) to collect persistent organic pollutants (POPs) from four sites in Baiyangdian Lake in July 2003. Following extraction from the PFUs, relative concentrations of seven organochlorine pesticides (OCPs) and ten polychlorinated biphenyls (PCBs) were determined by gas chromatography. OCPs and PCBs were detected in the microbial communities from all the four sampling stations. In terms of the total concentration of POPs (OCPs+ PCBs), two river estuary stations had more POP (18.45 mu g/L and 9.77 mu g/L) than the two mid-lake stations (4.75 mu g/L and 5.21 mu g/L), indicating that Baiyangdian Lake was significantly impacted by inflow from the Fu River and Baigou River.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r = 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system, microorganism and urease activities in the root zones were very important factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial crusts are attracting much interest in view of their possible uses in environmental conservation and ecological restoration of the and and semiarid regions. Because algae play an irreplaceable important role in the early formation and the strengthening of microbial crusts, they are paid much more attention to than other cryptogams. In this paper, an overview of the current knowledge on the fine structure and development of microbial crust, focusing on the algal biomass, vertical distribution, succession, influential factors on algae, cohesion of soil stabilization, cementing mechanism for soil particles and the microalgal extracellular polymers is given, with particular emphasis on the authors' researches, and some prospects are put forward as well.