36 resultados para METAL-ELECTRODES
Resumo:
A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.
Resumo:
Amyloid beta peptide plays a critical role in the pathogenesis of Alzheimer's disease (AD). Metal ions are highly enriched in cerebral amyloid deposits in AD and are proposed to be able to mediate A beta conformation. Therefore, a rapid, low-cost, and sensitive detection of metal-induced A beta aggregation and their relation to AD is clearly needed for the clinical diagnosis and treatment. In this report, we study metal-induced A beta aggregation by a rapid, label-free electrochemical method and monitor both the aggregation kinetics and the morphology in the absence or presence of Zn (II) and Cu (II).
Resumo:
Adsorption of polyethyleneimine (PEI)-metal ion complexes onto the surfaces of carbon nanotubes (CNTs) and subsequent reduction of the metal ion leads to the fabrication of one-dimensional CNT/metal nanoparticle (CNT/M NP) heterogeneous nanostructures. Alternating adsorption of PEI-metal ion complexes and CNTs on substrates results in the formation of multilayered CNT films. After exposing the films to NaBH4, three-dimensional CNT composite films embedded with metal nanoparticles (NPs) are obtained. UV-visible spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy are used to characterize the film assembly. The resulting (CNT/M NP)(n) films inherit the properties from both the metal NPs and CNTs that exhibit unique performance in surface-enhanced Raman scattering (SERS) and electrocatalytic activities to the reduction of O-2; as a result, they are more attractive compared to (CNT/polyelectrolyte)(n) and (NP/polyelectrolyte)(n) films because of their multifunctionality.
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.
Resumo:
In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.
Resumo:
Through layer-by-layer assembly, a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu. or Zn) were first successfully immobilized on a 4-aminobenzoic acid modified glassy carbon electrode surface. The electrochemical behaviors of these polyoxometalates were investigated. They exhibit some special properties in the films different from those in homogeneous aqueous solution. The Cu-centered reaction mechanism in the ZnW11Cu multilayer film was described. The electrocatalytic behaviors of these multilayer film electrodes to the reduction of H2O2 and BrO3- were comparatively studied.
Resumo:
The electrocatalytic oxidation of hydrazine (N2H4) on a glassy carbon electrode (GC) modified by monolayer and polymer films of cobalt protoporphyrin dimethyl ester (CoPP) has been studied. Both the monolayer and polymer films of CoPP are very active to the anodic oxidation of N2H4. The activity of CoPP for the anodic oxidation of N2H4 is dependent on the pH of the solution, and the thickness of polymerized CoPP film. The oxidation kinetics were examined by methods of cyclic voltammetry, rotating disc electrodes and steady-state polarization measurement.
Resumo:
The transfer behavior of alkali motal ions K~+ and Na~+ across the interfaces of water/nitrobenzene and water/1, 2-dichloroethane facilitated by Triton X-100 is investigated by cyclic voltammetry with four electrodes. The equations of interfacial half-wave potential derived in terms of the mechanism proposed isverified by the experimental data and consistent with the practical △_0~wφ_p-pM curves.
Resumo:
The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.
Resumo:
For metal-matrix composites (MMCs), interfacial debonding between the ductile matrix and the reinforcing hard inclusions is an important failure mode. A fundamental approach to improving the properties of MMCs is to optimize their microstructure to achieve maximum strength and toughness. Here, we investigate the flow stress of a MMC with a nanoscale microstructure similar to that of bone. Such a 'biomorphous' MMC would be made of staggered hard and slender nanoparticles embedded in a ductile matrix. We show that the large aspect ratio and the nanometer size of inclusions in the biomorphous MMC lead to significantly improved properties with increased tolerance of interfacial damage. In this case, the partially debonded inclusions continue to carry mechanical load transferred via longitudinal shearing of the matrix material between neighboring inclusions. The larger the inclusion aspect ratio, the larger is the flow stress and work hardening rate for the composite. Increasing the volume concentration of inclusion also makes the biomorphous MMC more tolerant of interfacial damage.
Resumo:
The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.
Resumo:
A systematic approach is proposed to obtain the interfacial interatomic potentials. By inverting ab initio adhesive energy curves for the metal-MgO ceramic interfaces, We derive interfacial potentials between Ag and O2-, Ag and Mg2+, Al and O2-, Al and Mg2+. The interfacial potentials, obtained from this method, demonstrate general features of bondings between metal atoms and ceramic ions.
Resumo:
The effect of thermally activated energy on the dislocation emission from a crack tip in BCC metal Mo is simulated in this paper. Based on the correlative reference model on which the flexible displacement boundary scheme is introduced naturally, the simulation shows that as temperature increases the critical stress intensity factor for the first dislocation emission will decrease and the total number of emitted dislocations increase for the same external load. The dislocation velocity and extensive distance among partial dislocations are not sensitive to temperature. After a dislocation emission, two different deformation slates are observed, the stable and unstable deformation states. In the stable deformation slate, the nucleated dislocation will emit from the crack tip and piles up at a distance far away from the crack tip, after that the new dislocation can not be nucleated unless the external loading increases. In the unstable deformation state, a number of dislocations can be emitted from the crack lip continuously under the same external load.
Resumo:
The mechanical behaviors of 2124, Al-5Cu, Al-Li and 6061 alloys reinforced by silicon carbide particulates, together with 15%SiCw/6061 alloy, were studied under the quasi-static and impact loading conditions, using the split Hopkinson tension/compression bars and Instron universal testing machine. The effect of strain rate on the ultra tensile strength (UTS), the hardening modulus and the failure strain was investigated. At the same time, the SEM observations of dynamic fracture surfaces of various MMC materials showed some distinguished microstructures and patterns. Some new characteristics of asymmetry of mechanical behaviors of MMCs under tension and compression loading were also presented and explained in details, and they could be considered as marks to indicate, to some degree, the mechanism of controlling damage and failure of MMCs under impact loading. The development of new constitutive laws about MMCs under impact loading should benefit from these experimental results and theoretical analysis.