35 resultados para Luteinizing hormone
Resumo:
Generating transgenic fish with desirable traits (e.g., rapid growth, larger size, etc.) for commercial use has been hampered by concerns for biosafety and competition if these fish are released into the environment. These obstacles may be overcome by producing transgenic fish that are sterile, possibly by inhibiting hormones related to reproduction. In vertebrates, synthesis and release of gonadotropin (GtH) and other reproductive hormones is mediated by gonadotropin-releasing hormone (GnRH). Recently two cDNA sequences encoding salmon-type GnRH (sGnRH) decapeptides were cloned from common carp (Cyprinus carpio). This study analyzed the expression of these two genes using real-time polymerase chain reaction (RT-PCR) in different tissues carp at varying developmental stages. Transcripts of both genes were detected in ovary and testis in mature and regressed, but not in juvenile carp. To evaluate the effects of sGnRH inhibition, the recombinant gene CAsGnRHpc-antisense, expressing antisense sGnRH RNA driven by a carp beta-actin promoter, was constructed. Blocking sGnRH expression using antisense sGnRH significantly decreased GtH in the blood of male transgenic carp. Furthermore, some antisense transgenic fish had no gonadal development and were completely sterile. These data demonstrate that sGnRH is important for GtH synthesis and development of reproductive organs in carp. Also, the antisense sGnRH strategy may prove effective in generating sterile transgenic fish, eliminating environmental concerns these fish may raise. (c) 2007 Published by Elsevier B.V.
Rapid growth cost in “all-fish” growth hormone gene transgenic carp: Reduced critical swimming speed
Resumo:
Evidence has accumulated that there is a trade-off between benefits and costs associated with rapid growth. A trade-off between growth rates and critical. swimming speed (U-crit) had been also reported to be common in teleost fish. We hypothesize that growth acceleration in the F-3 generation of "all-fish" growth hormone gene (GH) transgenic common carp (Cyprinus carpio L.) would reduce the swimming abilities. Growth and swimming performance between transgenic fish and non-transgenic controls were) compared. The results showed that transgenic fish had a mean body weight 1.4-1.9-fold heavier, and a mean specific growth rate (SGR) value 6%-10% higher than the controls. Transgenic fish, however, had a mean absolute U-crit (cm/s) value 22% or mean relative Ucrit (BL/s) value 24% lower than the controls. It suggested that fast-growing "all-fish" GH-transgenic carp were inferior swimmers. It is also supported that there was a trade-off between growth rates and swimming performance, i.e. faster-growing individuals had lower critical swimming speed.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.
Resumo:
The cDNA of growth hormone receptor (GHR) was cloned from the liver of 2-year common carp (Cyprinus carpio L.) by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE). Its open reading frame (ORF) of 1806 nucleotides is translated into a putative peptide of 602 amino acids, including an extracellular ligand-binding domain of 244 amino acids (aa), a single transmembrane domain of 24 aa and an intracellular signal-transduction domain of 334 aa. Sequence analysis indicated that common carp GHR is highly homologous to goldfish (Carassius auratus) GHR at both gene and protein levels. Using a pair of gene-specific primers, a GHR fragment was amplified from the cDNA of 2-year common carp, a 224 bp product was identified in liver and a 321 bp product in other tissues. The sequencing of the products and the partial genomic DNA indicated that the difference in product size was the result of a 97 bp intron that alternatively spliced. In addition, the 321 bp fragment could be amplified from all the tissues of 4-month common carp including liver, demonstrating the occurrence of the alternative splicing of this intron during the development of common carp. Moreover, a semi-quantitative RT-PCR was performed to analyze the expression level of GHR in tissues of 2-year common carp and 4-month common carp. The result revealed that in the tissues of gill, thymus and brain, the expression level of GHR in 2-year common carp was significantly tower than that of 4-month common carp.
Resumo:
This study investigated non-specific immune functions of the F-2 generation of "all-fish" growth hormone transgenic carp, Cyprinus carpio L. Lysozyme activity was 145.0 (+/- 30.7) U ml(-1) in the transgenic fish serum and 105.0 (+/- 38.7) U ml(-1) in age-matched non-transgenic control fish serum, a significant difference (P < 0.01). The serum bactericidal activity in the transgenics was significantly higher than that in the controls (P < 0.05), with the percentage serum killing of 59.5% (6.83%) and 50.8% (8.67%), respectively. Values for leukocrit and phagocytic percent of macrophages in head kidney were higher in transgenics than controls (P < 0.05). However, the phagocytic indices in the transgenics and the controls were not different. In addition, the mean body weight of the transgenics was 63.4 (6.65) g, much higher than that of the controls [39.2 (+/- 3.30) g, P < 0.01]. The absolute weight of spleen of the transgenics [0.13 (+/- 0.03) g] was higher than that of the controls [0.08 (+/- 0.02) g, P < 0.01]. However, there was no difference in the relative weight of spleen between the transgenics and the controls, with the spleen mass index being 0.21% (+/- 0.02%) and 0.20% (+/- 0.03%), respectively. This study suggests that the "all-fish" growth hormone transgene expression could stimulate not only the growth but also the non-specific immune functions of carp. (c) 2006 Published by Elsevier B.V.
Resumo:
To provide hormone evidence on reproductive seasonality and maturity of the Yangtze finless porpoise, the authors monitored the monthly variations of serum reproductive hormones of a male Yangtze finless porpoise in captivity via radioimmunoassay from 1997 to 2003. It was demonstrated that the immature animal had a serum T level of 28-101ngdL -1 (6552ngdL -1 ), reached puberty with the serum T concentration ranging between 250 and 590ngdL -1 (390130ngdL -1 ), and attained reproductive maturity when the serum T level went beyond 1120180ngdL -1 in the breeding season. The body length growth of the animal showed a pattern similar to the serum T variations during its adolescent period from the age of 4 to 6 years. Moreover, the serum T concentration of the male porpoise exhibited significant seasonal variations, indicating that its breeding season may start as early as March and end as late as September.
Resumo:
Using conserved primers and the PCR reaction, the growth hormone (GH) gene and the 3'-UTR of the large yellow croaker (Pseudosciaena crocea) were amplified and sequenced. The gene structure was analyzed and compared to the GH genes of 5 other percoid fish downloaded from Genbank. Also the GH gene of the large yellow croaker and the genes from 14 Percoidei and 2 Labroidei species were aligned using Clustal X. A matrix of 564 bp was used to construct the phylogenetic tree using maximum parsimony and neighbor-joining methods. Phylogenetic trees by the two methods are identical in most of the clades with high bootstrap support. The results are also identical to those from morphological data. In general, this analysis does not support the monophyly of the families Centropomidae and Carangidae. But our GH gene tree indicates that the representative species of the families Sparidae and Sciaenidae are a monophyletic group.
Resumo:
We have cloned and characterized the full-length cDNA encoding thyroid-stimulating hormone beta-subunit (TSHbeta) from orange-spotted grouper Epinephelus coioides. It contains 913 nucleotides with an open reading frame encoding 146 amino acids with a 20 amino acid signal peptide. The grouper mature TSHbeta has 75, 70, 61, 59, 41, 42 and 40% identities to that of rainbow trout, Atlantic salmon, zebrafish, European eel, chicken. mouse and human, respectively. RT-PCR analysis indicated that the TSHbeta mRNA was expressed abundantly not only in pituitary but also in gonads. A more interesting finding is to reveal the differential TSHbeta expressions between the ovaries and the transitional gonads or testes in natural individuals of orange-spotted grouper and red-spotted grouper Epinephelus akaara, and in artificial sex reversal individuals of red-spotted grouper induced by MT feeding. In situ hybridization localization provided direct evidence that the TSHbeta was transcribed in the germ cells. In the growing oocytes, the TSHbeta transcripts were concentrated on the ooplasm periphery. In testicular tissues, the intensively expressed TSHbeta cells were found to be spermatogonia and spermatocytes in the spermatogenic cysts. This is the first report of a TSHbeta expressed in the gonads of any vertebrates in addition to the expected expression in the pituitary, and it expresses more transcripts in the gonads during sex reversal or testis than in the ovaries both in E. coioides and E. akaara. Importantly, the TSHbeta identification in germ cells allows us to further investigate the functional roles and the molecular mechanisms in gametogenesis of groupers, especially in sex reversal and in spermatogenesis. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The first successful case of transgenic fish was achieved in 1984. It is in a model system that the integration and expression of recombinant human growth hormone (hGH) in host red common carp (Cyprinus carpio, red var.) have been thoroughly studied. Recently, the integration sites have been recovered and characterized. Compared with non-transgenic peers, hGH-transgenic fish are prior in dietary utilization and growth performance. In view of bio-safety and bio-ethics, an "all-fish" construct CAgcGH, grass carp growth hormone fused with common carp P-actin promoter, has been generated and transferred into Yellow River carp (C carpio, local strain in Yellow River) fertilized eggs. Under middle-scale trial, CAgcGH-transgenics show higher growth rate and food conversion efficiency than the controls, which is consistent to laboratory findings. To avoid the potential impact of transgenic fish on the environment, a sterile strain of transgenic triploid fish has been successfully produced. The "all-fish" transgenic common carp is also approved safe enough as daily food, according to a test based on the pathological principles of new medicines issued by the Ministry of Health of China. The "all-fish" transgenic common carp with growth enhancement is now ready for market, but looking for governmental authorization. (C) 2003 Editions scientifiques et medicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved.
Resumo:
The transgenic carp were produced by micro-injection of CAgcGHc into the fertilized eggs. Observation of the thymus development between the transgenics and non-transgenic controls was carried out. The thymus of one-year-old transgenics F1 showed a great increase in both size and weight. The unilateral thymus of the transgenics weighed from 190 to 295 mg with average 218.6 mg, whereas the unilateral thymus of the controls weighed 20-81 mg with average 42.5 mg; i.e. the thymus weight in the transgenics was 5.14 fold over that in the controls. The index of thymus/body weight in the transgenics was 2.97 fold over the controls. Light microscopy observation indicated that the thymus of the transgenics; well developed with the thickened outer region and compactly arranged thymocytes, while the thymus in the controls were degenerating with the thinned outer region, scattered thymocytes and groups of fatty cells. Further analysis with the electron microscopy revealed that pro-liferous cells in the transgenics; were mainly small lymphocytes and no pathological changes were found. The results confirmed that the "All-fish" GH-transgene promotes thymus development and thymocyte proliferation, and retards thymus degeneration. The study has laid a foundation for further analysis of the immunobiological function in GH-transgenic carp.
Resumo:
F-4 generation of human growth hormone (hGH) gene-transgenic red common carp, and the non-transgenic controls were fed for 8 weeks on purified diets with 20%, 30% or 40% protein. Analysis of whole-body amino acids showed that the proportions of lysine, leucine, phenylalanine, valine and alanine, as percentages of body protein, increased significantly, while those of arginine, glutamic acid and tyrosine decreased, with increases in dietary protein level in at least one strain of fish. Proportions of the other amino acids were unaffected by the diets. The proportions of lysine and arginine were significantly higher, while those of leucine and alanine were lower in the transgenics than in the controls in at least one diet group. Proportions of the other amino acids were unaffected by strain. The results suggest that the whole-body amino acid profile of transgenic carp, when expressed as proportions of body protein, was in general, similar to that of the non-transgenic controls. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The F-4 generation of human growth hormone (hGH) transgenic red common carp Cyprinus carpio had significantly higher growth rates than the non-transgenic controls. Protein and energy intakes were significantly higher in the transgenic carp than in the controls fed the 20% protein diet, but were not different between the two strains fed diets with 30 and 40% protein. Faecal protein loss, as a proportion of protein intake, was significantly lower in the transgenics than in the controls fed diets with 20 and 30% protein, but was not different between the two strains Fed diet with 40% protein. Faecal energy loss, as a proportion of energy intake, was significantly lower in the transgenics than in the controls fed diet with 20% protein, but was not different between the two strains fed diets with 30 and 40% protein. Recovered protein, as a proportion of protein intake, was significantly higher in the transgenics than in the controls fed all diets, whereas recovered energy was significantly higher in the transgenic fish fed the 40% protein diet. For fish fed each diet, the transgenics had significantly higher body contents of dry matter and protein, but lower contents of lipid than the controls. It was concluded that transgenics were more efficient in utilizing dietary protein than the controls. it a lower dietary protein level; transgenics achieved higher growth rates mainly by increasing feed intake; at higher levels of dietary protein, transgenics achieved higher growth rates mainly through a higher energy conversion efficiency. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
The effects of estradiol (E(2)) on growth hormone (GH) production was investigated in gonad-intact female goldfish. It was first necessary to generate a specific antibody for use in immunocytochemistry, Western, and dot-blot analyses of GH production. To accomplish this, grass carp GH (gcGH) cDNA was cloned by the reverse transcription polymerase chain reaction (RT-PCR) and expressed in Echerichia coli and a specific polyclonal antibody to recombinant gcGH was generated in the rabbit. In Western blot, the anti-gcGH antibody specifically immunoreacted with recombinant gcGH, purified natural common carp GH, and with a single 21.5-kDa GH form from pituitary extracts of grass carp, common carp, goldfish, and zebrafish but not salmon, trout, or tilapia. Intraperitoneal injection of the recombinant gcGH enhanced the growth rates of juvenile common carp demonstrating biological activity of this GH preparation. Electron microscopic studies showed that the anti-gcGH-I antibody specifically reacted with GH localized in the secretory granules of the goldfish somatotroph. Using anti-gcGH-I in a dot-blot assay, it was found that in vivo implantation of solid silastic pellets containing E(2) (100 mu g/g body weight for 5 days) increased pituitary GH content by 150% in female goldfish. In a second, independent study employing a previously characterized anticommon carp GH antibody for radioimmunoassay, it was found that E(2) increased pituitary GH content by 170% and serum GH levels by approximately 350%. The E(2)-induced hypersecretion of GH and increase in pituitary GH levels was not associated with changes in steady-state pituitary GH mRNA levels, suggesting that this sex steroid may enhance GH synthesis at the posttranscriptional or translational level. Previous observations indicate that GH can stimulate ovarian E(2) production. The present results show that E(2) can in turn stimulate GH production, indicating the existence of a novel pituitary GH-ovarian feedback system in goldfish. (C) 1997 Academic Press.
Resumo:
Transgenic common carp, Cyprinus carpio, produced by the microinjection of fertilized eggs with a linearized chimeric plasmid pMThGH, a human growth hormone (hGH) gene with a mouse metallothionein-I (MT) gene promoter in pBR322, were used to produce F1 and F2 transgenics. Following hypophysectomy of the transgenic F2 common carp, non-transgenic common carp and non-transgenic crucian carp, growth was monitored for up to 110 days. In addition, recombinant hGH was injected subcutaenously into a group of the non-transgenic crucian carp. Growth rate analyses indicated that (1) hypophysectomy of non-transgenic common carp and crucian carp results in the cessation of growth, (2) hGH administration can stimulate the growth of hypophysectomized crucian carp and (3) hypophysectomized hGH-transgenic common carp continue to grow in the absence of their own growth hormone, suggesting that the hGH-transgene is being expressed in tissues other than the pituitary.