408 resultados para Luminescence mechanisms
Resumo:
To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm3+/Yb3+-codoped oxyhalide tellurite glasses were investigated under 980nm excitation. The results showed that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at TM2O3% =0.1 mol%, and then decrease with increasing Tm2O3 content. The effect of TM2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The up-conversion properties of Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation were investigated. Intense blue up-conversion luminescence due to the Tm3+: (1)G(4) -> H-3(6) transition was observed in the glass-ceramics. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The up-conversion mechanism is proposed. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics and the concentrations dependence of upconversion luminescence are also discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3% = 3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence. After heat-treatment, ZnAl2O4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. No infrared emission was detected in the as-prepared glass samples, while broadband infrared luminescence centered at 1310 nm with full width at half maximum (FWHM) of about 300 nm was observed from the glass-ceramics. The peak position of the infrared luminescence showed a blue-shift with increasing heat-treatment temperature, but a red-shift with an increase in NiO concentration. The mechanisms of the observed phenomena were discussed. These glass-ceramics are promising as materials for super broadband optical amplifier and tunable laser. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Er3+-doped halide modified tellurite glasses were synthesized by conventional melting and quenching method. The Judd-Ofelt analysis was performed on the absorption spectra and the transition probabilities, excited state lifetimes, and the branching ratios were calculated and discussed. The intense infrared and visible fluorescence spectra under 980 nm excitation were obtained. Strong upconversion signal was observed at pumping power as low as 30 mW in the glasses with halide ions. The upconversion mechanisms and power dependent intensities were discussed, which showed two-photon process are involved for the green and red emissions. The decay times of the emitting states and the corresponding quantum efficiency were determined and explained. (C) 2004 American Institute of Physics.
Resumo:
Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers. C (c) 2005 Springer Science + Business Media, Inc.
Resumo:
We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 4 10 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Thermal stability, Raman spectra and blue upconversion luminescence properties of Tm-3divided by /Yb-3divided by -codoped halide modified tellurite glasses have been Studied. The results showed that the mixed halide modified tellurite glass (TFCB) has the best thermal stability, the lowest phonon energies and the strongest upconversion emissions. The effect of halide on upconversion intensity is observed and discussed and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tin (3+) in TFCB Glass may be a potentially useful material for developing upconversion optical devices.. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The thermal stability, Raman spectrum and upconversion properties of Tm^(3+)/Yb^(3+) co-doped new oxyfluoride tellurite glass are investigated. The results show that Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass possesses good thermal stability, lower phonon energy, and intense upconversion blue luminescence. Under 980-nm laser diode (LD) excitation, the intense blue (475 nm) emission and weak red (649 nm) emission corresponding to the 1G4 -> 3H6 and 1G4 -> 3F4 transitions of Tm^(3+) ions respectively, were simultaneously observed at room temperature. The possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass can be used as potential host material for the development of blue upconversion optical devices.
Resumo:
Structural and up-conversion fluorescence properties in ytterbium-sensitized thulium-doped novel oxychloride bismuth-germanium glass have been studied. The structure of novel bismuth-germanium glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wave numbers. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the up-conversion luminescence. Intense blue and weak red emissions centered at 477 and 650 mn, corresponding to the transitions 1G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. This novel oxychloride bismuth-germanium glass with low maximum phonon energy (similar to 730 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Novel oxyfluoride glasses are developed with the composition of 30SiO(2)-15Al(2)O(3)-28PbF(2)-22CdF(2)-0.1TmF(3)-xYbF(3) -(4.9-x) AlF3(x = 0, 0.5, 1.0, 1.5, 2.0) in mol fraction. Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and bear infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm3+: D-1(2) -> F-3(4), (1)G(4) -> H-3(6), (1)G(4) -> F-3(4), and H-3(4) -> H-3(6), respectively, are observed. Due to the sensitization of Yb3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.
Resumo:
Tm3+-Yb3+ codoped oxyfluoride silicate glasses suitable for upconversion laser has been fabricated. In this paper, effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+ codoped oxyfluoride silicate glasses have been systematically investigated. The experimental results indicate that, with the substitution CdF2 for PbF2, the glass thermal stability increases and the UV cutoff edge moves to short-wave band slightly. With increasing CdF2 content, the blue and red upconversion luminescence intensity increases slightly at first, and then increases rapidly. While the near infrared (NIR) upconversion emission intensity increases notably at first and then increases slightly. However, the blue and NIR luminescence intensity are much stronger than that of red, indicating these oxyfluoride silicate glasses are more preferable for blue and NIR emissions than red emission. The possible upconversion mechanisms for the blue, red and NIR fluorescence are also estimated and evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tm3+/Yb3+-codoped gernianate-niobic (GN) and germanium-bismuth (GB) glasses have been synthesized by conventional ruching and quenching method. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4)->H-3(6) and (1)G(4)->H-3(4), respectively, were observed at room temperature. The possible Up-conversion mechanisms are discussed and estimated. GN glass showed a weaker up-conversion emission than GB glass, which is inconsistent with the prediction from the difference of maximum phonon energy between GN and GB glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. For the first time, our results reveal that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tm3+-doped oxide-chloride germanate and tellurite glasses have been synthesized by conventional melting method. Intense up-conversion luminescence emissions were simultaneously observed at room temperature in these glasses. The possible up-conversion mechanisms are discussed and estimated. However, in these Tm3+-doped glasses, tellurite glass showed weaker up-conversion emissions than germanate glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Our results confirm that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.