22 resultados para Low-impact camping
Resumo:
Rapid urbanization and industrialization in southern Jiangsu Province have consumed a huge amount of arable land. Through comparative analysis of land cover maps derived from TM images in 1990, 2000 and 2006, we identified the trend of arable land loss. It is found that most arable land is lost to urbanization and rural settlements development. Urban settlements, rural settlements, and industrial park-mine-transport land increased, respectively, by 87 997 ha (174.65%), 81 041 ha (104.52%), and 12 692 ha (397.99%) from 1990 to 2006. Most of the source (e.g., change from) land covers are rice paddy fields and dryland. These two covers contributed to newly urbanized areas by 37.12% and 73.52% during 1990-2000, and 46.39% and 38.86% during 2000-2006. However, the loss of arable land is weakly correlated with ecological service value, per capita net income of farmers, but positively with grain yield for some counties. Most areas in the study site have a low arable land depletion rate and a high potential for sustainable development. More attention should be directed at those counties that have a high depletion rate but a low potential for sustainable development. Rural settlements should be controlled and rationalized through legislative measures to achieve harmonious development between urban and rural areas, and sustainable development for rural areas with a minimal impact on the ecoenvironment. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A poly(butylene terephthalate) (PBT)/linear low-density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method, For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE-g-AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE-g-AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE-g-AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/ T,T PE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE-g-AA decreased.
Resumo:
This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The Charpy impact fracture behavior of notched specimens of phenolphthalein poly(ether ketone) (PEK-C) has been studied over a range of temperature using a JJ-20 Model instrumented impact tester. For PEK-C, there exist two temperature regions which distinguish the fracture mechanism, and the brittle fracture was preferentially governed by slip or shear bands at relatively high temperatures, but by crazes at low temperatures. The temperature dependence of the ductility index (DI) shows similar peaks to the tan delta loss. (C) 1995 John Wiley and Sons, Inc.
Resumo:
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.
Resumo:
The impact of astaxanthin-enriched algal powder on auxiliary memory improvement was assessed in BALB/c mice pre-supplemented with different dosages of cracked green algal (Haematococcus pluvialis) powder daily for 30 days. The supplemented mice were first tested over 8 days to find a hidden platform by swimming in a Morris water maze. Then, for 5 days, the mice were used to search for a visible platform in a Morris water maze. After that, the mice practised finding a safe place-an insulated platform in a chamber-for 2 days. During these animal experimental periods, similar algal meals containing astaxanthin at 0, 0.26, 1.3 and 6.4 mg/kg body weight were continuously fed to each group of tested mice. Profiles of latency, distance, speed and the direction angle to the platforms as well as the diving frequency in each group were measured and analyzed. The process of mice jumping up onto the insulated platform and diving down to the copper-shuttered bottom with a 36 V electrical charge were also monitored by automatic video recording. The results of the Morris maze experiment showed that middle dosage of H. pluvialis meals (1.3 mg astaxanthin/kg body weight) significantly shortened the latency and distance required for mice to find a hidden platform. However, there was no obvious change in swim velocity in any of the supplemented groups. In contrast, the visible platform test showed a significant increase in latency and swim distance, and a significant decrease in swim speed for all groups of mice orally supplemented with H. pluvialis powder compared to the placebo group (P < 0.05 or P < 0.01). Mice supplemented with the algal meal hesitantly turned around the original hidden platform, in contract to mice supplemented with placebo, who easily forgot the original location and accepted the visible platform as a new safe place. These results illustrate that astaxanthin-enriched H. pluvialis powder has the auxiliary property of memory improvement. The results from the platform diving test showed that the low and middle dosage of H. pluvialis powder, rather that the high dosage, increased the latency and reduced the frequency of diving from the safe insulated platform to the electrically stimulated copper shutter, especially in the low treatment group (P < 0.05). These results indicate that H. pluvialis powder is associated with dose-dependent memory improvement and that a low dosage of algal powder (<= middle treatment group) is really good for improving the memory.