21 resultados para Longitude


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our study deals with the high resolution body wave tomography in North china and adjacent areas(30°N-43°N,100°E-130°E), where earthquakes occurred many times in history and has a very complicated geological structure. 6870 events recorded at 273 digital seismic stations from CDSN during 1996-2002 and stations settled by Seislab of IGCAS in Bohai Bay area, including 1382 local earthquakes and 5488 teleseismic earthquakes are used in this study. In the data we used, the average number of received stations is greater than 5, the error of picking up direct arrival time is 0.1-0.5s. Before the inversion, we use Checkerboard method to confirm the reliability of result of Local events; use Restoring Resolution Test to confirm the reliability of result of teleseismic events. We also analyzed the effect of different parameters in the inversion. Based the analysis above, the model used in this paper is divided into small blocks with a dimension of 0.33°in the latitude and longitude directions and 5km、15km、30km in depth, and initial velocity model. Using pseudobending method to calculate the ray traveling path, LSQR algorithm to inverse, finally, we got the body velocity images below 25km and above 480km in this area using Joint- inversion with local events and teleseismic events. We made the conclusion at last: (1)at top zone of the south of Sichuan Basin , there exits low velocity anomalies, below 40km is the high velocity zone extend to 300km; (2) Above the 40km of Ordos block exits low velocity zone, while below 40km until 240km, the high velocity anomalies are interlaced by low velocity anomalies. Below 300km, the anomalies are unclear any more; (3) On the whole, the velocity structure below 400km on the mantle transition zone of Eastern China area shows its changes from low velocity to high velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ionospheric parameter M(3000)F2 (the so-called transmission factor or the propagation factor) is important not only in practical applications such as frequency planning for radio-communication but also in ionospheric modeling. This parameter is strongly anti-correlated with the ionospheric F2-layer peak height hmF2,a parameter often used as a key anchor point in some widely used empirical models of the ionospheric electron density profile (e.g., in IRI and NeQuick models). Since hmF2 is not easy to obtain from measurements and M(3000)F2 can be routinely scaled from ionograms recorded by ionosonde/digisonde stations distributed globally and its data has been accumulated for a long history, usually the value of hmF2 is calculated from M(3000)F2 using the empirical formula connecting them. In practice, CCIR M(3000)F2 model is widely used to obtain M(3000)F2 value. However, recently some authors found that the CCIR M(3000)F2 model has remarkable discrepancies with the measured M(3000)F2, especially in low-latitude and equatorial regions. For this reason, the International Reference Ionosphere (IRI) research community proposes to improve or update the currently used CCIR M(3000)F2 model. Any efforts toward the improvement and updating of the current M(3000)F2 model or newly development of a global hmF2 model are encouraged. In this dissertation, an effort is made to construct the empirical models of M(3000)F2 and hmF2 based on the empirical orthogonal function (EOF) analysis combined with regression analysis method. The main results are as follows: 1. A single station model is constructed using monthly median hourly values of M(3000)F2 data observed at Wuhan Ionospheric Observatory during the years of 1957–1991 and compared with the IRI model. The result shows that EOF method is possible to use only a few orders of EOF components to represent most of the variance of the original data set. It is a powerful method for ionospheric modeling. 2. Using the values of M(3000)F2 observed by ionosondes distributed globally, data at grids uniformly distributed globally were obtained by using the Kriging interpolation method. Then the gridded data were decomposed into EOF components using two different coordinates: (1) geographical longitude and latitude; (2) modified dip (Modip) and local time. Based on the EOF decompositions of the gridded data under these two coordinates systems, two types of the global M(3000)F2 model are constructed. Statistical analysis showed that the two types of the constructed M(3000)F2 model have better agreement with the observational M(3000)F2 than the M(3000)F2 model currently used by IRI. The constructed models can represent the global variations of M(3000)F2 better. 3. The hmF2 data used to construct the hmF2 model were converted from the observed M(3000)F2 based on the empirical formula connecting them. We also constructed two types of the global hmF2 model using the similar method of modeling M(3000)F2. Statistical analysis showed that the prediction of our models is more accurate than the model of IRI. This demonstrated that using EOF analysis method to construct global model of hmF2 directly is feasible. The results in this thesis indicate that the modeling technique based on EOF expansion combined with regression analysis is very promising when used to construct the global models of M(3000)F2 and hmF2. It is worthwhile to investigate further and has the potential to be used to the global modeling of other ionospheric parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global positioning system (GPS) can not only provide precise service for navigation and timing, but also be used to investigate the ionospheric variation. From the GPS observations, we can obtain total electron content (TEC), so-called GPS TEC, which is used to characterize the ionospheric structure. This thesis mainly concerns about GPS TEC data processing and ionospheric climatological analysis as follows. Firstly, develop an algorithm for high-resolution global ionospheric TEC mapping. According to current algorithms in global TEC mapping, we propose a practical way to calibrate the original GPS TEC with the existing GIM results. We also finish global/local TEC mapping by model fitting with the processed GPS TEC data; in practice, we apply it into the local TEC mapping in Southeast of China and obtain some initial results. Next, suggest a new method to calculate equivalent ionospheric global electron content (GEC). We calculate such an equivalent GEC with the TEC data along the geographic longitude 120°E. With the climatological analysis, we can see that GEC climatological variation is mainly composed of three factors: solar cycle, annual and semiannual variations. Solar cycle variation is dominant among them, which indicates the most prominent influence; both annual and semiannual variations play a secondary role and are modulated by solar activity. We construct an empirical GEC model driven by solar activity and seasonal factors on the basis of partial correlation analysis. Generally speaking, our researches not only show that GPS is advantageous in now-casting ionospheric TEC as an important observation, but also show that GEC may become a new index to describe the solar influence on the global ionosphere since the great correlation between GEC and solar activity factor indicates the close relationship between the ionosphere and solar activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, more and more attention has been paid to stable isotope ratios in terrestrial depositional systems. Among them, δ~(13)C value is mainly determined by the surface vegetation, while vegetation is directly related to climate, therefore, carbon isotope ratio in soil organic matter and pedogenic carbonate has been employed as an important paleoecological indicator. In order to test the paleoecological information extracted from stable isotope ratios in terrestrial depositional systems, it is necessary to study the relationships between δ~(13)C value in standing terrestrial plants and today climate, as well as between δ~(13)C value in modern surface soil organic matter and standing vegetation. Thus, these relationships were studied in this paper by means of analysing δ~(13)C in standing plants and modem surface soil organic matter in North China. The main results and conclusions are presented as following: 1. According to their δ~(13)C values, 40 C-4 species represent about 16% of the 257 plant species sarnpled from the North China. C-4 photosynthesis mainly occurs in Poaceae, Cyperaceae and Chenopidaceae families, and percentage representation of C-4 photosynthesis is up to 56% in Poaceae family. 2. The δ~(13)C values of C-3 plant species in North China vary from -21.7‰ to -32.0‰ with an average of -27.1‰, and 93% focus on the range of -24.0‰ ~ -30.0‰; δ~(13)C values of C-4 plant species in North China are between -10.0‰ ~ -15.5‰ with an average of -12.9‰, and 90% concentrate on the range of -11.0‰ ~ -15.0‰. 3. The δ~(13)C composition of C-3 plant species collected from Beijing, a semi-moist district, mainly vary between -27.0‰ ~ -30.0‰, and the average is -28.7‰; the δ ~(13)C values of plants in the semi-arid district, east and west to the Liu Pan Moutain, focus on the range of-26.0‰ ~ -29.0‰ and -25.0‰ ~ -28.0‰, respectively, with the mean value of -27.6‰ and -26.6‰, respectively; the δ~(13)C composition in the arid district dominantly vary from -24.0‰ to -29.0‰, with the average of -26.2‰, and among them, the δ~(13)C values of C-3 plant species in deserts are often between - 22‰ ~ -24‰; the δ~(13)C values in the cold mountain district concentrate on the range of -24.0‰ to -29.0‰, with the average of -26.3‰. 4. The main range of δ~(13)C composition of C-4 plant species, derived from Beijing, a semi-moist district, are -13.0‰ ~ -15.5‰; the semi-arid district, -11.0‰ ~ -14.0‰; the arid district, -11.0‰ ~ -14.0‰. The mean values of them are -14.0‰, -12.4‰,-12.7‰, respectively. 5. From east to west in North China, δ~(13)C values of C-3 plant species increase with longitude. The correlation between δ~(13)C ratios of C-3 plant species and longitude is linear. Changing temperate and precipitation and changing atmosphere pressure are spossible explanations. 6. Almost all C-3 plant species have the trends that their δ~(13)C values gradually increase with decreasing precipitation, decreasing temperature and increasing altitude. Our results show the increases of the δ~(13)C value by 0.30 ~ 0.45‰, 0.19 ~ 0.27‰ and 1.1 ~ 1.2‰ per 100 mm, I℃ and 1000 m, respectively, for all C-3 plant species together. 7. The δ~(13)C values of all C-3 plant species together and a part of C-3 species show highly significant linear correlation with the mean annual temperature, the mean annual precipitation and the altitude, and the results suggest that they can be used as proxies of these environmental variables, while, those without highly significant correlation, may be not suitable as the proxies. 8. The extent, which of responses of δ~(13)C composition to environmental variables, is different for each C-3 plant specie. 9. The δ~(13)C variations along altitude and longitude may be non-linear for C-4 p1ant species in North China. The mean annual temperature may be not important influential factor, thus, it suggests that the δ~(13)C composition of C-4 plant species may be not suitable as the proxy of the mean annual temperature. The influences of summer temperature on δ~(13)C values are much bigger than that of annual temperature, among them, the influence of September temperature is biggest. The mean annual precipitation may be one of the dominant influential factors, and it shows a highly significant non-linear relationship with δ~(13)C values, and the result indicates that δ~(13) C composition of C-4 plant species can be employed as the proxy of the mean annual precipitation. 10. The variations of δ~(13)C ratios do not show systematic trends along longitude, latitude and altitude for modern surface soil organic in Northwest China. ll. The δ~(13)C ratios of modern surface soil organic do not exhibit systematic patterns with temperature and precipitation in Northwest China, it suggests that, unless soil organic is transferred from pure C-3 or C-4 vegetation, the δ~(13)C composition of soil organic may be not used as proxies of climatic variables. 12. The δ~(13)C values of modem surface soil organic are heavier than that of standing vegetation, and the difference ofrnean δ~(13)C between them is -2.18‰. 13. Without considering the δ~(13)C difference between vegetation and soil organic, as well as the δ~(13)C drift in various enviromnent, we may not obtain the valuable information of C-3, C-4 relative biomass in vegetation. 14. The C-4 biomass contribution in vegetation increase with decreasing latitude, increasing longitude and decreasing altitude in Northwest China. The C-4 biomass almost are zero in those regions north to 38 ° N, or west to 100°E, or above 2400 m. 15. The C-4 relative biomass in vegetation increase with growing temperature and precipitation. and, C-4 plants are rare at those regions where the mean annual temperature is less 4 ℃, or the mean annual precipitation is less 200 mm, and their biomass contribution in vegetation are almost zero. Both the mean annual temperature and the mean annual average precipitation may be the important influential factors of C-4 distribution, but the dominant factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relationship between biology and environment is always the theme of ecology. Transect is becoming one of the important methods in studies on relationship between global change and terrestrial ecosystems, especially for analysis of its driving factors. Inner Mongolia Grassland is the most important in China Grassland Transect brought forward by Yu GR. In this study, changes in grassland community biomass along gradients of weather conditions in Inner Mongolia was researched by the method of transect. Methods of regression about biomass were also compared. The transect was set from Eerguna county to Alashan county (38° 07' 35" ~50° 12' 20" N, 101° 55' 25" -120° 20' 46" E) in Inner Mongolia, China. The sample sites were mainly chosen along the gradient of grassland type, meadow steppe-* typical steppe-*desert steppe-*steppification desert-^desert. The study was carried out when grassland community biomass got the peak in August or September, 2003 and 2004. And data of 49 sample sites was gotten, which included biomass, mean annual temperature, annual precipitation, accumulated temperature above zero, annual hours of sunshine and other statistical and descriptive data. The aboveground biomass was harvested, and the belowground biomass was obtained by coring (30 cm deep). Then all the biomass samples were dried within (80 + 5) °C in oven and weighted. The conclusion is as follows: 1) From the northeast to the southwest in Inner Mongolia, along the gradient of grassland type, meadow steppe-*typical steppe-*desert steppe-*steppification desert-* desert, the cover degree of vegetation community reduces. 2) By unitary regression analysis, biomass is negatively correlated with mean annual temperature, s^CTC accumulated temperature, ^10°C accumulated temperature and annual hours of sunshine, among which mean annual temperature is crucial, and positively with mean annual precipitation and mean annual relative humidity, and the correlation coefficient between biomass and mean annual relative humidity is higher. Altitude doesn't act on it evidently. Result of multiple regression analysis indicates that as the primary restrictive factor, precipitation affects biomass through complicated way on large scale, and its impaction is certainly important. Along the gradient of grassland type, total biomass reduces. The proportion of aboveground biomass to total biomass reduces and then increases after desert steppe. The trend of below ground biomass's proportion to total biomass is adverse to that of aboveground biomass. 3) Precipitation is not always the only driving factor along the transect for below-/aboveground biomass ratio of different vegetation type composed by different species, and distribution of temperature and precipitation is more important, which is much different among climatic regions, so that the trend of below-/aboveground biomass ratio along the grassland transect may change much through the circumscription of semiarid region and arid region. 4) Among reproductive allocation of aboveground biomass, only the proportion of stem in total biomass notably correlates to the given parameters. Stem/leaf biomass ratio decreases when longitude and latitude increase, caloric variables decrease, and variables about water increase from desert to meadow steppe. The change trends are good modeled by logarithm or binomial equations. 5) 0'-10 cm belowground biomass highly correlates to environmental parameters, whose proportion to total biomass changes most distinctly and increases along the gradient from the west to the east. The deeper belowground biomass responses to the environmental change on the adverse trend but not so sensitively as the surface layer. Because the change value of 0~10 cm belowground biomass is always more than that of below 10 cm along the gradient, the deference between them is balanced by aboveground biomass's change by the resource allocation equilibrium hypothesis.