41 resultados para Loads
Resumo:
It is proved that Johnson's damage number is the sole similarity parameter for dynamic plastic shear failure of structures loaded impulsively, therefore, dynamic plastic shear failure can be understood when damage number reaches a critical value. It is suggested that the damage number be generally used to predict the dynamic plastic shear failure of structures under various kinds of dynamic loads (impulsive loading, rectangular pressure pulse, exponential pressure pulse, etc.,). One of the advantages for using the damage number to predict such kind of failure is that it is conveniently used for dissimilar material modeling.
Resumo:
The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beamsolutions of the loads with different distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation offers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length offers such information. But to compute the functional it is necessary to know the beam deformation. So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The effects of dielectric layer thickness and electrostatic voltage on the cantilever beamstiction are studied.The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.
Resumo:
In this paper, a method is presented to calculate the plane electro-elastic fields in piezoelectric materials with multiple cracks. The cracks may be distributed randomly in locations, orientations and sizes. In the method, each crack is treated as a continuous distributed dislocations with the density function to be determined according to the conditions of external loads and crack surfaces. Some numerical examples are given to show the interacting effect among multiple cracks.
Resumo:
The response of porous Al2O3 to nanoindentation was investigated at microscopic scales (nm-mu m) and under ultra-low loads from 5 to 90 mN with special attention paid to the dependence of the load-depth behaviour to sample porosity. It was found that the load-depth curves manifest local responses typical of the various porous structures investigated. This is particularly clear for the residual deformation after load removal. Similarly, the limited mean pressure of the sample containing small grains and interconnected pores is consistent with its porous structure. By comparison, the samples with larger grain size and various porous structures exhibit higher pressures and smaller residual deformations that can be attributed to the mechanical response of the solid phase. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.
Resumo:
Many experimental observations have shown that a single domain in a ferroelectric material switches by progressive movement of domain walls, driven by a combination of electric field and stress. The mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally, the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total potential energy is put forward in which the basic unknown quantities are the displacement u(i), electric displacement D-i and volume fraction rho(I) of the domain switching for the variant I. The mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total potential energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion established by Hwang et al. [ 1]. Based on the domain switching criterion, a set of linear algebraic equations for determining the volume fraction rho(I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction rho(I) of domain switching for each domain is prescribed, the unknown displacement and electric potential can be obtained based on the conventional finite element procedure. It is assumed that a domain switches if the reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the energy barrier will strengthen when the volume fraction of the domain switching increases. The external mechanical and electric loads are increased step by step. The volume fraction rho(I) of domain switching for each element obtained from the last loading step is used as input to the constitutive equations. Then the strain and electric fields are calculated based on the conventional finite element procedure. The finite element analysis is carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and available experimental data are compared and discussed. The present theoretic prediction agrees reasonably with the experimental results.
Resumo:
Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness, Young's modulus, stress-strain response, etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model, the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up, and the results agree well with the data generated by numerical simulation.
Resumo:
Nanoindentation tests were carried out to investigate certain elastic properties of Al2O3/SiCp composites at microscopic scales (nm up to mu m) and under ultra-low loads from 3 mN to 250 mN, with special attention paid to effects caused by SiC particles and pores. The measured Young's modulus depends on the volume fraction of SiC particles and on the composite porosity and it can compare with that of alumina. The Young's modulus exhibits large scatters at small penetrations, but it tends to be constant with lesser dispersion as the indentation depth increases. Further analysis indicated that the scatter results from specific microstructural heterogeneities. The measured Young's moduli are in agreement with predictions, provided the actual role of the microstructure is taken into account. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, a simple mechanical model is developed to predict the dynamic response of a cracked structure subjected to periodic excitation, which has been used to identify the physical mechanisms in leading the growth or arrest of cracking. The structure under consideration consists of a beam with a crack along the axis, and thus, the crack may open in Mode I and in the axial direction propagate when the beam vibrates. In this paper, the system is modeled as a cantilever beam lying on a partial elastic foundation, where the portion of the beam on the foundation represents the intact portion of the beam. Modal analysis is employed to obtain a closed form solution for the structural response. Crack propagation is studied by allowing the elastic foundation to shorten (mimicking crack growth) if a displacement criterion, based on the material toughness, is met. As the crack propagates, the structural model is updated using the new foundation length and the response continues. From this work, two mechanisms for crack arrest are identified. It is also shown that the crack propagation is strongly influenced by the transient response of the structure.
Resumo:
A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.
Resumo:
The various patterns (shear banding, surface wrinkling and necking) of material bifurcation in plane sheet under tension are investigated in this paper by means of a numerical method. It is found that numerical analysis can provide better ground for searching for the lowest critical loads. The inhomogeneity caused by void damage and the nonuniformity in the stress distribution across sheet thickness are proved to have detrimental effects on the material bifurcation. Nevertheless, material stability can be promoted by any means of depressing void damage or alleviating stress, even locally across the thickness. Besides, the peculiar behaviour of material bifurcation under slight biaxiality state is demonstrated. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
'Notch-sensitive regions' have been observed during a series of experimental investigations into the dynamic plastic behaviour and failure of thin-walled metallic radially notched circular rings with are-shaped supports subjected to concentrated impact loads. The experimental results show that the exterior notches at some regions have no effect on the deformation of the rings, but do have effect at the remaining regions. The notch-sensitive region is theoretically determined by using the equivalent structures technique; fairly good agreement has been reached between the simple theory and the experimental results. Both dimensional and theoretical analyses prove that whether a plastic hinge formed or not at the notched section does not depend on the mean radius of the ring and the input kinetic energy. It depends on the weak coefficient of the notched section and the angle of the support. Generally speaking, there are mainly three failure modes for a notched circular ring with are-shaped support under impact loading: Mode I, large inelastic deformation when the notch is outside the sensitive region, in this case the ring deforms as a normal one; Mode II, large inelastic deformation only at some part of the ring and tearing occurred at the notched sections; Mode III, large inelastic deformation and total rupture occurred at the notched sections. It is believed that the present study could assist the understanding of the dynamic behaviour and failure of other kinds of nonstraight components with macroscopic imperfections under impulsive loading.
Resumo:
The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.
Resumo:
The elastic plane problem of a rigid co-circular arc inclusion under arbitrary loads is dealt with. Applying Schwarz's reflection principle integrated with the analysis of the singularity of complex stress functions, the general solution of the problem is found and several closed-form solutions to some problems of practical importance are given. Finally, the stress distribution at the arc inclusion end is examined and a comparison is made with that of the rigid line inclusion end to show the effect of curvature.
Resumo:
The simplified governing equations and corresponding boundary conditions of flexural vibration of viscoelastically damped unsymmetrical sandwich plates are given. The asymptotic solution of the equations is then discussed. If only the first terms of the asymptotic solution of all variables are taken as an approximate solution, the result is identical with that obtained from the Modal Strain Energy (MSE) Method. As more terms of the asymptotic solution are taken, the successive calculations show improved accuracy. With the natural frequencies and the modal loss factors of a damped sandwich plate known, one can calculate the response of the plate to various loads providing a reliable basis for engineering design.