174 resultados para Lithium salt


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase contrast across the crystal thickness induced by the internal field is measured by the digital holographic interferometry just after the congruent lithium niobate crystal is partially poled. The direction of applied external field is antiparallel to that of internal field, and the measured phase contrast varies linearly with the applied external field. A new internal field is obtained by this method and named effective internal field. The distinct discrepancy between effective and equivalent internal fields is observed. The authors attribute this effect to the new macroscopic representation of elastic dipole components of defect complex in the crystal. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase mapping of domain kinetics under the uniform steady-state electric field is achieved and investigated in the LiNbO3 crystals by digital holographic interferometry. We obtained the sequences of reconstructed three-dimensional and two-dimensional wave-field phase distributions during the electric poling in the congruent and near stoichiometric LiNbO3 crystals. The phase mapping of individual domain nucleation and growth in the two crystals are obtained. It is found that both longitudinal and lateral domain growths are not linear during the electric poling. The phase mapping of domain wall motions in the two crystals is also obtained. Both the phase relaxation and the pinning-depinning mechanism are observed during the domain wall motion. The residual phase distribution is observed after the high-speed domain wall motion. The corresponding analyses and discussions are proposed to explain the phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact continuous-wave blue laser has been demonstrated by direct frequency doubling of a laser diode with a periodically poled lithium niobate (PPLN) waveguide crystal. The optimum PPLN temperature is near 28 degreesC, and the dependence of waveguide crystals on crystal temperature is less sensitive than that of bulk crystals. A total of 14.8 mW of 488-nm laser power has been achieved. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+-doped lithium-potassium mixed alkali aluminophosphate glasses belonging to the oxide system xK(2)O-(15x)Li2O-4B(2)O(3)-11Al(2)O(3)-5BaO-65P(2)O(5) are obtained in a semi-continuous melting quenching process. Spectroscopic properties of Er3+-doped glass matrix have been analysed by fitting the experimental data with the standard Judd-Ofelt theory. It is observed that Judd-Ofelt intensity parameters-Omega(t)(t=2, 4 and 6) of Er3+ change when the second alkali is introduced into glass matrix. The variation of line strength S-ed[I-4(13/2),I-4(15/2)] follows the same trend as that of the Omega(6) parameter. The effect of mixed alkali on the spectroscopic properties of the aluminophosphate glasses, such as absorption cross-section, stimulated emission cross-section, spontaneous emission probability, branching ratio and the radiative lifetime, has also been investigated in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband infrared luminescence centred at around 1300 nm with full-width at half maximum of about 342 nm was observed from transparent Ni2+-doped lithium-alumino-silicate glass-ceramics embedded with beta-eucryptite crystallines. The room temperature fluorescent lifetime was 98 mu s. The transparent glass-ceramics may have potential applications in a widely tunable laser and a super-broadband optical amplifier for optical communications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)-->4I_(15/2), 4S_(3/2)-->4I_(15/2), and 4F_(9/2)-->4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New lithium-barium-lead-bismuth glasses with low OH- concentration have been obtained. The role of the different components in the glass formation has been explored from the thermal, density, and refractive index measurements. The T-g, T-x, and T-x-T-g values of these glasses are in the range of 358-400, 453-575, and 87-197 degreesC, respectively. The densities (p) and refractive indices of these glasses are mainly affected by Bi2O3 and PbO contents. A wide transmitting window from visible to infrared (IR) regions for some compositions of these glasses has been observed, which makes them appealing candidates for different optical applications such as upconverting phosphors, new laser materials, optical waveguides, and crystal-free fibre drawing. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+ doped aluminophosphate glasses with various Na2O/Li2O ratios were prepared at 1250 degrees C using a silica crucible to study mixed alkali effect (MAE). The effect of relative alkali content on glass transition temperature, crystallization temperature and thermal stability were investigated using differential scanning calorimetry (DSC). In addition, apparent activation energies for crystallization, E, were determined employing the Kissinger equation. The effect of Al2O3 content on the magnitude of MAE was also discussed. No mixed-alkali effect is observed on crystallization temperature. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic light-emitting diodes (OLEDs) using tris-(8-hydroxy-quinolinato) aluminum (Alq(3)) as an emitter, 8-hydroxy-quinolinato lithium (Liq) as an electron injection layer, were prepared. Experimental results show that the efficiency of device with Liq is three times higher than that without Liq. The device using Liq as an injection layer is less sensitive in efficiency to the Liq thickness than that using LiF. In addition to the Alq3 based devices, Liq is also very effective as an electron injection layer for 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl based blue OLED and poly (2-methoxy,5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene) based orange polymer OLED. (c) 2004 Elsevier B.V. All rights reserved.