177 resultados para Liquid Crystalline Polymer
Resumo:
The divergent synthesis of a new carbosilane liquid-crystalline (LC) dendrimer of the first generation (D1) is described. Twelve 4-butoxyazobenzene groups are used as mesogenic fragments and attached in the periphery of the molecule. Structure and properties of D1 were characterized by element analysis, H-1 NMR, MALDI-TOF-MS, IR, UV-Vis, polarizing optical micrograph, DSC and WAXD. It is argued that mesophase of nematic type is realized. It is shown that the mesophase type of the dendrimer essentially depends on the chemical nature of the mesogenic groups. Phase behavior of D1 is K82N1331132N67K. The melting point of D1 is 30similar to43 degreesC lower than that of M5, its clearing temperature is 9 similar to 11 degreesC higher than that of M5 and its mesophase region is enlarged by 39 similar to 54 degreesC compared to that of M5. Eight extinguished brushes emanating from a stationary point are observed, corresponding to the high-strength disclination of S = + 2 of dendrimer. The clearing enthalpy of D1 is smaller than the value that is commonly found for phase transition n-i in LC and LC polymers. This may be due to the presence of branched dendrimer cores which cannot be easily deformed to fit into the anisotropic LC phase structure.
Resumo:
The miscibility and mechanical properties of the blends of polybutylene terephthalate (PBT) and polypropylene (PP) with a liquid crystalline ionomer (LCI) containing a sulfonate group on the terminal unit as a compatibilizer were assessed. SEM and optical microscopy (POM) were used to examine the morphology of blends of PBT/PP compatibilized by LCI. DSC and TGA were used to discuss the thermal properties of PBT/PP blends with LCI and without LCI. The experimental results revealed that the LCI component affect, to a great extent, the miscibility and crystallization process and mechanical property of PBT/PP blends, The fact is that increasing LCI did improve miscibility of PBT/PP blends and the addition of 1% LCI to the PBT/PP blends increased the ultimate tensile strength and the ultimate elongation.
Resumo:
A novel side-chain, liquid-crystalline ionomer (SLCI) with a poly(methyl hydrosiloxane) main chain and side chains containing sulfonic acid groups was used in blends of polyamide-1010 (PA1010) and polypropylene (PP) as a compatibilizer. The morphological structure, thermal behavior, and liquid-crystalline properties of the blends were investigated by Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The morphological structure of the interface of the blends containing SLCI was improved with respect to the blend without SLCI. The compatibilization effect of greater than 8 wt % SLCI for the two phases, PA1010 and PP, was better than the effects of other SLCI contents in the blends.
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
A series of main-chain Liquid-crystalline ionomers containing sulfonate groups pendant on the polymer backbone were synthesized by an interfacial condensation reaction of 4,4'-dihydroxy-alpha,alpha'-dimethyl benzalazine, a mesogenic monomer, with brilliant yellow (BY), a sulfonate-containing monomer, and a 1/9 mixture of terephthaloyl and sebacoyl dichloride. The structures of the polymers were characterized by LR and UV spectroscopies. DSC and thermogravimetric analysis were used to measure the thermal properties of those polymers, and the mesogenic properties were characterized by a polarized optical microscope, DSC, and wide-angle X-ray diffraction. The ionomers were thermally stable to about 310 degreesC. They were thermotropic liquid-crystalline polymers (LCPs) with high mesomorphic-phase transition temperatures and exhibited broad nematic mesogenic regions of 160-170 degreesC, and they were lyotropic LCPs with willowy leaf-shaped textures in sulfuric acid. However, the thermotropic liquid-crystalline properties were somewhat weakened because the concentration of BY was more than 8%. The inherent viscosity in N-methyl-2-pyrrolidone suggested that intramolecular associations of sulfonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The synthesis of new chiral smectic A (S-A) side-chain liquid crystalline polysiloxanes (LCPs) and ionomers (LCIs) containing 4-allyloxy-benzoyl-4-(S-2-ethylhexanoyl) p-benzenediol his ate (ABB) as mesogenic units and 4-[[4-(2-propenyloxy)phenyl] azo]benzensulfonic acid (AABS) as nonmesogenic units is presented. The chemical structures of the monomers and polymers are confirmed by FTIR spectroscopy or H-1-NMR. Differential scanning calorimetry (DSC), optical polarizing microscopy, and X-ray diffraction measurements reveal that all the polymers P-I-P-IV and ionomers P-V-P-VI exhibit S-A texture. The results seem to demonstrate that the tendency toward the S-A-phase region increases with increasing sulfonic acid concentration, and the thermal stability of the S-A phase is determined by the flexibility of the polymer backbones and the interactions of sulfonic acid groups. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Series of thermotropic liquid crystalline poly (aryl ether ketone) s were synthesized by mucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with different difluoromonomers, The relationship between structure and properties of the novel copolymers was investigated. For the copolymers with liquid crystalline properties, their melting transition temperatures show no great change with increase the content of the crystal-disrupting unit. The reason is that the crystal phase is directly transformed from the ordered liquid crystal phase. Side-groups have important effect on mesophase stability, The temperature range of mesophase stability for the chloro-polymers is smaller than those of other series of copolymers (P-phenyl, t-butyl, methoxy, 3-trifluoromethylbenzene). This behavior indicates that the effect of geometric repulsive factor on the thermodynamic stability of the mesophase is much larger than that of the polarizability attractive factor. Different ordered liquid crystal phases are observed in the polymers with different molecular weights. At low molecular weight, highly ordered smectic liquid crystal phases form. With increasing the molecular weight, the ordered degree of the liquid crystals decreases, and only the nematic liquid crystal phase is observed in the polymer with higher molecular weight.
Resumo:
A liquid crystalline (LC) copolyether has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,11-dibromoundecane with a 50/50 (both in %) equal composition of the 7- and 11-methylene monomers [coTPP-7/11(5/5)]. A mono-domain with a homeotropic alignment can be induced by a thin film surface in the LC phase. When an electrostatic field is applied to the surface-induced mono-domains parallel to the thin film surface normal, the molecular alignment undergoes a change from the homeotropic to uniaxial homogeneous arrangement. However, when the field is applied to a direction perpendicular to the thin film surface normal. the molecular alignment is about 10 degrees -tilt with respect to the homeotropic alignment toward the a*-axis. This is because the permanent dipole moment of the copolyether is not right vertical to the molecular direction. The calculation of molecular dipoles indicates that the permanent dipole moment of this copolyether is about 70 degrees away from the molecular axis, which leads to a negative dielectric anisotropy. It is speculated that the 10 degrees- rather than 20 degrees -tilt is due to a balance between the alignment induced by the electrostatic field and the surface. In the electrostatic field, molecules are subjected to a torque tau, which is determined by the permanent dipole moment P and the electrostatic field E: tau = P x E. The molecular realignment in both parallel and perpendicular directions to the thin film surface normal is determined by satisfying the condition of tau = P x E = 0. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The orientational behavior of liquid crystalline polymers with para-nitro azobenzene as side chains under electric field was studied by UV-visible spectroscopy. The results showed that lambda(max) of the poled polymer films was around 394nm, compared to that of the unpoled films, the absorption decreased due to poling. The orientational parameters increased linearly with the increase of the electric field. The temporal stability of the poled polymer film is good at room temperature. This kind of materials showed promise application as nonlinear optical component in photorefractive polymers.
Resumo:
Crosslinkable side-chain liquid crystalline polyesters PCn from N-[n-(4-(4-nitrophenylazo)phenyloxy)alkyl]diethanolamine (Cn, n = 3, 5, 6, 10) as mesogenic monomers and maleic anhydride were synthesized and characterized. The thermal properties of PCn's were studied by means of DSC, polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD), and the results showed that all the polymers studied exhibit enantiotropic liquid crystallinity. In the molar mass independent region, the relatively high content of cis -CH=CH- groups in the polymer backbone of PC3 causes an increase of the melting temperature (T-m) and a decrease of T-g and isotropisation temperature (T-i). The crosslinking of PCn in the radical polymerization with styrene was confirmed by FTIR spectroscopy. The absorption band at 1300 cm(-1) attributed to the in-plane C-H-bending vibration of trans -CH=CH- in the polymer backbone disappeared after crosslinking, indicating that the trans -CH=CH- functions are consumed in the crosslinking polymerization of styrene.
Resumo:
Two closely series of poly(ester imide)s had been synthesized by solution polycondensation of p-phenylenebis(trimellitate) dianhydride with aliphatic diamines. The differential scanning calorimetry (DSC) traces of the most poly(ester imide)s exhibited two endotherms representing the solid state to anisotropic phase transition (T-m1) and the anisotropic to isotropic melt transition (T-m2), respectively. Observation under polarizing microscope and wide-angle X-ray diffraction (WAXD) measurements suggested that the anisotropic phase formed above the melting paints (T-m1) had a smectic character. The thermogravimetric analyses (TGA) revealed that the thermal stabilities of the poly(ester imide)s were up to 350 degrees C. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The novel poly(aryl ether ketone)s containing chloro-side group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and chlorohydroquinone with either 4,4'-difluorobenzophenone(BP/CH/DF) or 1,4-bis(p-fluorobenzoyl)benzene (BP/CH/BF) and their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques. The thermotropic liquid crystalline behavior was observed in the copolymers containing 50 and 70% biphenol. Melting transition (Tm) and isotropization transition (Ti) both appeared in the DSC thermograms. A banded texture was formed after shearing the sample in the liquid crystalline state. The novel poly(aryl ether ketone)s had relatively higher glass transition temperature (Tg) in the range of 168 similar to 200 degrees C and lower melting temperature (Tm) in the range of 290 similar to 340 degrees C. The thermal stability (Td) was in the range of 430 similar to 490 degrees C.
Resumo:
A new class of liquid crystalline poly(ester-imide)s was synthesized by melt polycondensation. The basic physical properties of the resulting polymers were investigated by differential scanning calorimetry (d.s.c.), wide-angle X-ray diffraction (WAXD), polarized light microscopy, scanning electron microscopy (SEM), thermogravimetric analysis (t.g.a.), and rheological and mechanical testing. All of these poly(ester-imide)s were amorphous, as reflected by the results obtained from the WAXD and d.s.c. studies. Characterization and comparison of these poly(ester-imide)s with the corresponding polyesters suggested that the introduction of imide groups into the polyester chain is favourable for the formation of liquid crystalline phases. These results, together with the rheological studies, suggested that there existed a form of strong inter- or intramolecular electron donor-acceptor interaction which played a significant role in the liquid crystalline properties of the poly(ester-imide)s. The polymer products thus obtained exhibited good mechanical properties, with flexural strengths and moduli as high as 174 MPa and 6.9 GPa, respectively. The morphology of the fracture surfaces of extruded rod samples showed a sheet-like structure which consisted of ribbons and fibres oriented along the flow direction. The glass transition temperatures and thermal stabilities of the polymers were improved by the incorporation of imide groups. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The synthesis and characterization of side-chain liquid crystalline (LC) polyacrylates containing para-nitroazobenzene (Pn) as mesogenic groups were described. Homopolymers with 3 and 4 carbon atoms in the spacers were non-LC polymers; for homopolymers with 6 carbon atoms in the spacer, nematic LC behavior was observed. Copolymers with acrylic acid as one component exhibited an S-Ad phase according to the WAXD results which showed the d/l of 1.4-1.54 for the copolymers with 3, 4, and 6 carbon atoms in the spacers. Considering the molecular structure as well as the WAXD results of the copolymers, the possible molecular arrangement in the smectic Sad phase was proposed, in which the smectic layers were composed of the antiparallel mesogens and the antiparallel arrangement was considered to be enhanced due to the H bond between - COOH and - NO2. The stress-induced orientational phenomena of Pn in the LC states was also discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Block copolymers of poly(ethersulphone) (PES) oligomers with liquid crystalline polyester units were synthesized by the reaction of dihydroxy-terminated poly(ether sulphone) oligomers (number-average molecular weights: 704, 1,158 and 2570) and terephthaloyl bis(4-oxybenzoyl chloride), and their properties were investigated. The results indicated that the copolymer with PES segments of molecular weight of 704 possessed birefringent features when annealed at 360 degrees C, while the copolymer with PES segments of molecular weight of 2,570 became isotropic. Also, the block copolymers had a better chemical resistance and high-temperature stability than PES.