44 resultados para Linear system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The convective instabilities in two or more superposed layers heated from below were studied extensively by many scientists due to several interfacial phenomena in nature and crystal growth application. Most works of them were performed mainly on the instability behaviors induced only by buoyancy force, especially on the oscillatory behavior at onset of convection (see Gershuni et. Al.(1982), Renardy et. Al. (1985,2000), Rasenat et. Al. (1989), and Colinet et. Al.(1994)) . But the unstable situations of multi-layer liquid convection will become more complicated and interesting while considering at the same time the buoyancy effect combined with thermocapillary effect. This is the case in the gravity reduced field or thin liquid layer where the thermocapillary effect is as important as buoyancy effect. The objective of this study was to investigate theoretically the interaction between Rayleigh-Bénard instability and pure Marangoni instability in a two-layer system, and more attention focus on the oscillatory instability both at the onset of convection and with increasing supercriticality. Oscillatory behavious of Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) and flow patterns are presented in the two-layer system of Silicon Oil (10cSt) over Fluorinert (FC70) for a larger various range of two-layer depth ratios (Hr=Hupper/Hdown) from 0.2 to 5.0. Both linear instability analysis and 2D numerical simulation (A=L/H=10) show that the instability of the system depends strongly on the depth ratio of two-layer liquids. The oscillatory instability regime at the onset of R-M-B convection are found theoretically in different regions of layer thickness ratio for different two-layer depth H=12,6,4,3mm. The neutral stability curve of the system displaces to right while we consider the Marangoni effect at the interface in comparison with the Rayleigh-Bénard instability of the system without the Marangoni effect (Ma=0). The numerical results show different regimes of the developing of convection in the two-layer system for different thickness ratios and some differences at the onset of pure Marangoni convection and the onset of Rayleigh-Bénard convections in two-layer liquids. Both traveling wave and standing wave were detected in the oscillatory instability regime due to the competition between Rayleigh-Bénard instability and Marangoni effect. The mechanism of the standing wave formation in the system is presented numerically in this paper. The oscillating standing wave results in the competition of the intermediate Marangoni cell and the Rayleigh convective rolls. In the two-layer system of 47v2 silicone oil over water, a transition form the steady instability to the oscillatory instability of the Rayleigh-Marangoni-Bénard Convection was found numerically above the onset of convection for ε=0.9 and Hr=0.5. We propose that this oscillatory mechanism is possible to explain the experimental observation of Degen et. Al.(1998). Experimental work in comparison with our theoretical findings on the two-layer Rayleigh-Marangoni-Bénard convection with thinner depth for H<6mm will be carried out in the near future, and more attention will be paid to new oscillatory instability regimes possible in the influence of thermocapillary effects on the competition of two-layer liquids

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we studied the role of vertical component Of Surface tension of a water droplet on the deformation of membranes and microcantilevers (MCLs) widely used in lab-on-a-chip and micro-and nano-electromechanical system (MEMS/NEMS). Firstly, a membrane made of a rubber-like material, poly(dimethylsiloxane) (PDMS), was considered. The deformation was investigated using the Mooney-Rivlin (MR) model and the linear elastic constitutive relation, respectively. By comparison between the numerical solutions with two different models, we found that the simple linear elastic model is accurate enough to describe such kind of problem, which would be quite convenient for engineering applications. Furthermore, based on small-deflection beam theory, the effect of a liquid droplet on the deflection of a MCL was also studied. The free-end deflection of the MCL was investigated by considering different cases like a cylindrical droplet, a spherical droplet centered on the MCL and a spherical droplet arbitrarily positioned on the MCL. Numerical simulations demonstrated that the deflection might not be neglected, and showed good agreement with our theoretical analyses. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rayleigh-Marangoni-B,nard instability in a system consisting of a horizontal liquid layer and its own vapor has been investigated. The two layers are separated by a deformable evaporation interface. A linear stability analysis is carried out to study the convective instability during evaporation. In previous works, the interface is assumed to be under equilibrium state. In contrast with previous works, we give up the equilibrium assumption and use Hertz-Knudsen's relation to describe the phase change under non-equilibrium state. The influence of Marangoni effect, gravitational effect, degree of non-equilibrium and the dynamics of the vapor on the instability are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behavior of population transfer in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of exit rate and the ratio of atomic injection rate on gain behaviour has been investigated, and the effects of phase fluctuation on absorption, dispersion and population difference in an open four-level system have been analysed by using numerical simulation from the steady linear, analytical solution. The variation of the linewidth, Rabi frequency of the driving field, the exit rate or the ratio of atomic injection rate can change the lasing properties in the open system. The presence of finite linewidth due to driving-field phase fluctuation prevents the open four-level atomic system from obtaining a high refractive index along with zero absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy-and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavy-and light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A linear photodiode array spectrometer based, high resolution interrogation technique for fiber Bragg grating sensors is demonstrated. Spline interpolation and Polynomial Approximation Algorithm (PAA) are applied to the data points acquired by the spectrometer to improve the original PAA based interrogation method. Thereby fewer pixels are required to achieve the same resolution as original. Theoretical analysis indicates that if the FWHM of a FBG covers more than 3 pixels, the resolution of central wavelength shift will arrive at less than 1 pm. While the number of pixels increases to 6, the nominal resolution will decrease to 0.001 pm. Experimental result shows that Bragg wavelength resolution of similar to 1 pm is obtained for a FBG with FWHM of similar to 0.2 nm using a spectrometer with a pixel resolution of similar to 70 pm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-power, highly linear, multi-standard, active-RC filter with an accurate and novel tuning architec-ture is presented. It exhibits 1EEE 802. 11a/b/g (9.5 MHz) and DVB-H (3 MHz, 4 MHz) application. The filter exploits digitally-controlled polysilicon resistor banks and a phase lock loop type automatic tuning system. The novel and complex automatic frequency calibration scheme provides better than 4 comer frequency accuracy, and it can be powered down after calibration to save power and avoid digital signal interference. The filter achieves OIP3 of 26 dBm and the measured group delay variation of the receiver filter is 50 ns (WLAN mode). Its dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from a 2.85 V supply. The dissipation of calibration consumes 2 mA. The circuit has been fabricated in a 0.35μm 47 GHz SiGe BiCMOS technology; the receiver and transmitter filter occupy 0.21 mm~2 and 0.11 mm~2 (calibration circuit excluded), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 ptm diameter. The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 fxm aperture spaced on 500 (xm centers. The coupling system contains packaged laser diode bar, fast axis collimator, slow axis collimation array, beam transformation system and focusing system. The high brightness, high power density and single fiber output of a laser diode bar is achieved. The coupling efficiency is 65% and the power density is up to 1.03 * 10~4 W/cm~2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparison of aggregation behaviors between the branched block polyether T1107 (polyether A) and linear polyether (EO)(60)(PO)(40)(EO)(60) (polyether B) in aqueous solution are investigated by the MesoDyn simulation. Polyether A forms micelles at lower concentration and has a smaller aggregation number than B. Both the polyethers show the time-dependent micellar growth behaviors. The spherical micelles appear and then change to rod-like micelles with time evolution in the 10 vol% solution of polyether A. The micellar cluster appears and changes to pseudo-spherical micelles with time evolution in the 20 vol% solution of polyether A. However, the spherical micelles appear and change to micellar cluster with time evolution in the 20 vol% polyether B solution. The shear can induce the micellar transition of both block polyethers. When the shear rate is 1x10(5) s(-1), the shear can induce the sphere-to-rod transition of both polyethers at the concentration of 10 and 20 vol%. When the shear rate is lower than 1x10(5) s(-1), the huge micelles and micellar clusters can be formed in the 10 and 20 vol% polyether A systems under the shear, while the huge micelles are formed and then disaggregated with the time evolution in the 20 vol% polyether B system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional linear instability analysis of thermocapillary convection in a fluid-porous double layer system, imposed by a horizontal temperature gradient, is performed. The basic motion of fluid is the surface-tension-driven return flow, and the movement of fluid in the porous layer is governed by Darcy's law. The slippery effect of velocity at the fluid-porous interface has been taken into account, and the influence of this velocity slippage on the instability characteristic of the system is emphasized. The new behavior of the thermocapillary convection instability has been found and discussed through the figures of the spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we attempt to develop a sensitive detection method for glucose with the combination of the unique optical property of quantum dots and the specificity of enzymatic reactions. With glucose and hydroquinone as substrates, benzoquinone that intensively quenches the photoluminescence of quantum dots can be produced via the catalysis of bienzyme (glucose oxidase and horseradish peroxidase) system. A relatively low detection limit of 1.0 x 10(-8) mol/L can be achieved. Two linear ranges from 1.0 x 10(-6) to 1.5 x 10(-4) M and from 1.5 x 10(-4) to 1.0 x 10(-3) M were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, a sensitive and selective sensor for biothiols based on the recovered fluorescence of the CdTe quantum dots (QDs)-Hg(II) system is reported. Fluorescence of QDs could be quenched greatly by Hg(II). In the presence of biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), however, Hg(H) preferred to react with them to form the Hg(II)-S bond because of the strong affinity with the thiols of biothiols rather than quenching the fluorescence of the QDs. Thus, the fluorescence of CdTe QDs was recovered. The restoration ability followed the order GSH > Hcy > Cys due to the decreased steric hindrance effect. A good linear relationship was obtained from 0.6 to 20.0 mu mol L-1 for GSH and from 2.0 to 20.0 mu mol L-1 for Cys, respectively. The detection limits of GSH and Cys were 0.1 and 0.6 mu mol L-1, respectively. In addition, the method showed a high selectivity for Cys among the other 19 amino acids. Furthermore, it succeeded in detecting biothiols in the Hela cell.