19 resultados para Limited partnership
Resumo:
A diffusion-limited kinetic model was developed to describe the imidization of one-step polythioetherimide formation based on an endgroup diffusion model. The changes of conversion and viscosity during the imidization were monitored with thermogravimetric analysis and dynamic stress rheometry, respectively. It was observed that the imidization rate began to decelerate after a fast early stage, whereas the viscosity in the system increased dramatically after a period of low value. Amic acid and imide formations concurrently take place in the one-step polyimide formation, but the formation of amic acid is much slower than that of imide and is the rate-limiting step of imidization. When a second-order kinetic model was used to describe the imidization, the effect of viscosity on the diffusion resistance of reactive groups needed to be included. In order to predict the change of viscosity during the imidization, the Lipshitz-Macosko model was modified and introduced into the diffusion-limited kinetic model by the Stokes-Einstein equation. The comparison of the modeled results with experimental data indicated that the diffusion-limited kinetic model and the modified Lipshitz-Macosko model were able to efficiently predict the changes of conversion and viscosity with temperature and time during the one-step polythioetherimide formation. (C) 2001 John Wiley & Sons, Inc.
Resumo:
In this communication we analyse current versus voltage data obtained using one carrier injection at metal/polymer/metal structures, The used polymer is a soluble blue-emitting alternating block copolymer, Our experimental results demonstrate that the electron current is limited by a large amount of traps with exponential energy distribution in the copolymer. The electron ;mobility of 5.1 x 10(-10) cm(2)/V s is directly determined by space-charge-limited current measurements. The electron mobility is at least three orders of magnitude smaller than that for holes in the copolymer. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
To explore typhoon effects on dissolved organic carbon (DOC) dynamics, field investigations (tributary and dam site) and laboratory experiments (bioassay and DOC consumption) were conducted in a subtropical reservoir. A tributary survey indicated that after typhoon disruption, upstream areas were the sources of phosphate (P) but not DOC for the dam site located downstream. Bioassay experiments verified P-limitation on bacteria and phytoplankton during summer stratification, and bacteria showed a faster response than algae to added P. Experiments indicated that DOC consumption was determined by the availability of P. The 4 yr typhoon period (June-September) data of the dam site denoted that DOC concentration (27 to 270 mu M C) and its rate of change (-13 to 24 mu M C d(-1)) varied more dramatically in the weak (2006 and 2007) than in the strong (2004 and 2005) typhoon years. The negative correlation of DOC with the ratio of bacterial production (BP) to primary production (PP) in the euphotic zone (0 to 10 m) signified the interactive effects of auto- and heterotrophic processes on DOC variation. In the aphotic zone, the variation of DOC could be ascribed to the change of BP, which showed a positive correlation with P concentrations. This study documents that DOC concentration in the studied system varied at multiple time scales. Such variation can be explained by the decoupling between BP and PP, which is believed to be a function of the limiting nutrient's availability. More importantly, this study suggests that the P supply introduced by strong typhoons might have substantiated a tighter coupling between BP and PP, so that the amplitude of DOC oscillation during the summer period was effectively reduced.