45 resultados para Lewis acidity
Resumo:
比较研究了89.63MeV/u的碳离子束和6MeV的X射线照射Lewis肺癌细胞所致的细胞克隆存活和DNA损伤效应,以探讨单细胞凝胶电泳检测细胞辐射敏感性及重离子束治疗肿瘤的优势。结果表明,在10%细胞存活水平上碳离子束的相对生物学效应(Relative biological effectiveness,RBE)值达到1.77。单细胞凝胶电泳检测损伤DNA尾部百分含量(Tail DNA,TD)和Olive尾矩(Olive tail moment,OTM)的剂量效应曲线表明,X射线的剂量效应曲线为线性,而碳离子束诱导出一个包含线性和指数项的双阶段效应曲线。碳离子束辐照剂量大于8Gy后TD和OTM都存在饱和效应。在2Gy的剂量点,高传能线密度(LET)碳离子束比X射线产生更低的存活分数和更高的初始OTM。本研究提示:在Lewis肺癌细胞中,碳离子束照射比X射线产生更为强烈的细胞致死和DNA损伤效应,可使肿瘤治疗具有更高效率。
Resumo:
目的 研究重离子不同分次照射的生物效应。方法 除对照组外 ,选择了 2个剂量点 :低剂量为 12Gy,高剂量为 2 4Gy。每个剂量分单次、2和 3次照射组 ,观察Lewis肺癌的肿瘤体积变化、肿瘤生长延迟时间和荷瘤小鼠生存时间。结果 无论高剂量还是低剂量 ,分 3次照射的肿瘤生长延迟和生存时间都显著大于单次和分 2次照射。结论 采用分 3次照射的肿瘤生物效应优于单次和分 2次照射 ,低剂量又优于高剂量。此研究结果为我国重离子束治疗肿瘤的临床试验提供了实验依据。
Resumo:
研究了HIRFL提供的12C6+离子辐照C57BL/6J小鼠右后腿移植的Lewis肿瘤的生长延迟和碳离子辐照对Lewis肿瘤小鼠寿命的延长.结果表明,碳离子照射的小鼠肿瘤生长体积明显地小于对照的体积.在剂量相同、分次数辐照越多时,肿瘤生长就越缓慢,肿瘤抑制就越高.在辐照分次数相同时,不同剂量对受照肿瘤生长体积未产生差异.在4Gy×3,8Gy×3和12Gy×2组3种辐照剂量下,小鼠寿命的P值小于0.05;可知小鼠的寿命延长具有统计学意义.
Resumo:
DNA damage and cell reproductive death determined by alkaline comet and clonogenic survival assays were examined in Lewis lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. Based on the survival data, Lewis lung carcinoma cells were verified to be more radiosensitive to the carbon ion beam than to the X-ray irradiation. The relative biological effectiveness (RBE) value, which was up to 1.77 at 10% survival level, showed that the DNA damage induced by the high-LET carbon ion beam was more remarkable than that induced by the low-LET X-ray irradiation. The dose response curves of '' Tail DNA (%)'' (TD) and "Olive tail moment" (OTM) for the carbon ion irradiation showed saturation beyond about 8 Gy. This behavior was not found in the X-ray curves. Additionally, the carbon ion beam produced a lower survival fraction at 2 Gy (SF2) value and a higher initial Olive tail moment 2 Gy (OTM2) than those for the X-ray irradiation. These results suggest that carbon ion beams having high-LET values produced more severe cell reproductive death and DNA damage in Lewis lung carcinoma cells in comparison with X-rays and comet assay might be an effective predictive test even combining with clonogenic assay to assess cellular radio sensitivity
Resumo:
Aluminum-substituted mesoporous SBA-15 (Al-SBA-15) materials were directly synthesized by a hydrolysis-controlled approach in which the hydrolysis of the silicon precursor (tetraethyl orthosilicate, TEOS) is accelerated by fluoride or by using tetramethyl orthosilicate (TMOS) as silicon precursor rather than TEOS. These materials were characterized by powder X-ray diffraction (XRD), N-2 sorption isotherms, TEM, Al-27 MAS NMR, IR spectra of pyridine adsorption, and NH3-TPD. It is found that the matched hydrolysis and condensation rates of silicon and aluminum precursors are important factors to achieve highly ordered mesoporous materials. Al-27 MAS NMR spectra of Al-SBA-15 show that all aluminum species were incorporated into the silica framework for the samples prepared with the addition of fluoride. A two-step approach (sol-gel reaction at low pH followed by crystallization at high pH) was also employed for the synthesis of Al-SBA-15. Studies show that the two-step approach could efficiently avoid the leaching of aluminum from the framework of the material. The calcined Al-SBA-15 materials show highly ordered hexagonal mesostructure and have both Bronsted and Lewis acid sites with medium acidity.
Resumo:
The transformation of olefin to aromatics over ZSM-5 catalysts with different K-loadings has been investigated both in a continuous flow fixed-bed reactor and in a pulse microreactor. Investigation of variation of olefin aromatization activity with K-loadings shows that strong acid sites are indispensable for the converting of olefin to aromatics. As intermediates of olefin aromatization process, butadiene and cyclopentene not only show much higher aromatization activity than mono-olefins, but also can be transformed into aromatics over relatively weak acid sites of K/ZSM-5. A proposal is put forward, stating that among all the steps experienced in olefins aromatization, the formation of diene or cycloolfin from mono-olefins through hydrogen transfer is the key step and can be catalyzed by strong acid sites.
Resumo:
The role of Bronsted acidity of titanium silicalite zeolite (with different ratios of Si/Ti) in oxidation reactions of styrene has been investigated and discussed. For zeolites with Si/Ti > 42, most of the titanium is in the zeolite framework. These framework titanium species, which act both as the isolated titanium centers and as Bronsted acidity centers (together with the Bronsted acidity produced by the tetrahedral aluminum impurity introduced during synthesis), can catalyze both the epoxidation and the succeeding rearrangement reactions, thus promoting the formation of phenylacetaldehyde. With an increase in the titanium content of the zeolite, titanium will tend to stay outside the zeolite lattice, except for the TiOx nanophases which can be occluded in the zeolite channels or on the external surface. These non-framework titanium species are favorable for the carbon-carbon bond scission, leading to the production of additional benzaldehyde. The catalytic performances of these zeolites with different Si/Ti ratios are correlated here with their structural information by using solid-state NMR and UV-Vis methods. (C) 2003 Elsevier B.V. All rights reserved.