20 resultados para Lead mines and mining
Resumo:
The sediment and diagenesis process of reservoir are the key controlling factors for the formation and distribution of hydrocarbon reservoir. For quite a long time, most of the research on sediment-diagenesis facise is mainly focusing on qualitative analysis. With the further development on exploration of oil field, the qualitative analysis alone can’t meet the requirements of complicated requirements of oil and gas exploreation, so the quantitative analysis of sediment-diagenesis facise and related facies modling have become more and more important. On the basis of the research result from stratum and sediment on GuLong Area Putaohua Oil Layer Group, from the basic principles of sedimentology, and with the support from the research result from field core and mining research results, the thesis mainly makes the research on the sediment types, the space framework of sands and the evolution rules of diagenesis while mainly sticking to the research on sediment systement analysis and diagenetic deformation, and make further quantitative classification on sediment-diageneses facies qualitatively, discussed the new way to divide the sediment-diagenesis facies, and offer new basis for reservoir exploration by the research. Through using statistics theory including factor analysis, cluster analysis and discriminant analysis, the thesis devided sediment-diagenesis facies quantitatively. This research method is innovative on studying sediment-diagenesis facies. Firstly, the factor analysis could study the main mechanism of those correlative variables in geologic body, and then could draw a conclusion on the control factors of fluid and capability of reservoir in the layer of studying area. Secondly, with the selected main parameter for the cluster analysis, the classification of diagenesis is mainly based on the data analysis, thus the subjective judgement from the investigator could be eliminated, besides the results could be more quantitative, which is helpful to the correlative statistical analysis, so one could get further study on the quantitative relations of each sediment-diagenesis facies type. Finally, with the reliablities of discriminant analysis cluster results, and the adoption of discriminant probability to formulate the chart, the thesis could reflect chorisogram of sediment-diagenesis facies for planar analysis, which leads to a more dependable analytic results.According to the research, with the multi-statistics analysis methods combinations, we could get quantitative analysis on sediment-diagenesis facies of reservoir, and the final result could be more reliable and also have better operability.
Resumo:
In this paper, the Xiaodonggou porphyry molybdenum deposit located in the Xarmoron molybdenum metallogenic belt is chose as the research area. We have analyzed the petrology of the Xiaodonggou pluton in detail and made chemical analysis of the major and trace elements, Rb-Sr and Sm-Nd isotope, common lead isotope and SHRIMP zircon U-Pb dating et al; in the other hand, we use the molybdenite to make common lead analysis and Re-Os isotopic dating. The Xiaodonggou pluton is rich in silicon, potass, zirconium, and low in REE. In addition, it has no minus Eu abnormity and show a isotopic composition high in εNd(t) and low in Sri, indicating its magma origining from the melting of juvenile thicken lower crust. In the meanwhile, it contained the features of high temperature, quick melting, quick segregation and quick emplacement. The common lead analysis of the pluton orthoclase and molybdenite show that the former transfer from orogen to mantle and the latter come from mantle, which is consistent to the molybdenite sulfur isotopic and quartz oxygen isotopic composition, demonstrating that the rock and ore-forming materials of deposit having different sources, magma from the lower crust mixing with mantle fluid. In plus, we use the physical experiments results of the water-magma reaction to explain the interaction of magma and mantle fluid. In the deep crust, these two systems uplifted in a immiscible state; when they reached low depth, the stream film between fluid-magma collapsed, and the magma was broken into small agglomerates by the fluid, then they mixed thoroughly. The SHRIMP zircon U-Pb dating gave a result of 142±2Ma and the molybdenite Re-Os dating result is 138.1±2.8Ma, corresponding to the big tectonic transition period of 140Ma, when the major stress field changing from south and north to west and east. At this time, the Da Hinggan ling ranges area was under an extensive background, underplating proceeded and mantle materials could add into the magmas forming in the lower crust. So, from the above analysis, we propose the following model for the Xiaodonggou porphyry molybdenum deposit: in the early Cretaceous period, the Da Hinggan ling ranges area was under a extensive background, the adding of mantle fluid containing ore materials into heated lower crust made it melting to produce magmas. Following more mantle fluid got into the magma room and urged the magma to segregate from the source quickly. The fluid and magma uplifted together, when they arrived at shallow depth, the fluid-magma became unstable and the latter was broken into many small agglomerates with fluid connecting them in the interspaces. Because of the H+, K+ and various elements existing in the fluid, it would reacted with the magma and the rock through alteration and ore minerals crystallized out, forming the Xiaodonggou porphyry deposit with disseminated mineralization phenomenon.
Resumo:
The Western Qinling Orogenie belt in the Taibai-Fengxian and Xihe-Lixian areas can be subdivided into three units structurally from north to south, which are the island-arc, forearc basin and accretionary wedge, respectively. The forearc basin developed in the Late Paleozoic mainly controls sedimentation and some larger lead-zinc and gold deposits in the western Qinling. Stratigraphically, the island arc is dissected into the Liziyuan Group, the Danfeng Group and the Luohansi Group. The metavolcanic rocks include basic, intermediate and acidic rocks, and their geochemistry demonstrates that these igneous rocks generated in an island arc. Where, the basalts are subalkaline series charactered by low-medium potassium, with enriched LREE, negative Eu anomaly, and positive Nd anomaly. Cr-content of volcanic rocks is 2-3 times higher than that of island arc tholeiite all over the world. In addition, the lightly metamorphosed accretionary wedge in the areas of Huixian, Chengxian, Liuba and Shiqun is dominated by terrigenous sediments with carbonatite, chert, mafic and volcanic rocks. The age of the wedge is the Late Palaeozoic to the Trassic, while previous work suggested that it is the Silurian. The Upper Paleozoic between the island arc belt and accretionary wedge are mainly the sediments filled in the fore arc basin. The fillings in the forearc basin were subdivided into the Dacaiotan Group, the Tieshan Group, the Shujiaba Group and the Xihanshui Group, previously. They outcropped along the southern margins of the Liziyuan Group. The Dacaotan Group, the Upper Devonian, is close to the island arc complex, and composed of a suite of red and gray-green thick and coarse terrestrial elastics. The Shujiaba Group, the Mid-Upper Devonian, is located in the middle of the basin, is mainly fine-grained elastics with a few intercalations of limestone. The Xihanshui Group, which distributes in the southern of the basin, is mainly slates, phyllites and sandstones with carbonatite and reef blocks. The Tieshan Group, the Upper Devonian, just outcrops in the southwest of the basin, is carbonatite and clastic rocks, and deposited in the shallow -sea environment. The faults in the basin are mainly NW trend. The sedimentary characteristics, slump folds, biological assemblages in both sides of and within those faults demonstrate that they were syn-sedimentary faults with multi-period activities. They separated the forearc basin into several sub-basins, which imbricate in the background of a forearc basin with sedimentary characteristics of the piggyback basin. The deep hydrothermal fluid erupted along the syn-sedimentary faults, supported nutrition and energy for the reef, and resulted in hydrothermal-sedimentary rocks, reef and lead-zinc deposits along these faults. The sedimentary facies in the basin varies from the continental slope alluvial fan, to shallow-sea reef facies, and then to deep-water from north to south, which implies that there was a continental slope in the Devonian in the west Qinling. The strata overlap to north and to east respectively. Additionally, the coeval sedimentary facies in north and south are significantly different. The elastics become more and more coarser to north in the basin as well as upward coarsing. These features indicate prograding fillings followed by overlaps of the different fans underwater. The paleocurrent analyses show that the forearc basin is composed of thrust-ramp-basins and deep-water basins. The provenance of the fillings in the basin is the island arc in the north. The lead-zinc deposits were synchronous with the Xihanshui Group in the early stage of development of the forearc basin. They were strongly constrained by syn-sedimentary faults and then modified by the hydrothermal fluids. The gold deposits distributed in the north of the basin resulted from the tectonic activities and magmatism in the later stage of the basin evolution, and occurred at the top of the lead-zinc deposits spatially. The scales of lead-zinc deposits in the south of the basin are larger than that of the gold-deposits. The Pb-Zn deposits in the west of the basin are larger than those in the east, while the Gold deposits in the west of the basin are smaller than those in the east. Mineralizing ages of these deposits become younger and younger to west.
Resumo:
Seepage control in karstic rock masses is one of the most important problems in domestic hydroelectric engineering and mining engineering as well as traffic engineering. At present permeability assessment and leakage analysis of multi-layer karstic rock masses are mainly qualitative, while seldom quantitative. Quantitative analyses of the permeability coefficient and seepage amount are conducted in this report, which will provide a theoretical basis for the study of seepage law and seepage control treatment of karstic rocks. Based on the field measurements in the horizontal grouting galleries of seepage control curtains on the left bank of the Shuibuya Hydropower Project on the Qingjiang river, a hydraulic model is established in this report, and the computation results will provide a scientific basis for optimization of grouting curtain engineering. Following issues are addressed in the report. (1) Based on the in-situ measurements of fissures and karstic cavities in grouting galleries, the characteristics of karstic rock mass is analyzed, and a stochastic structural model of karstic rock masses is set up, which will provide the basis for calculation of the permeability and leakage amount of karstic rock mass. (2) According to the distribution of the measured joints in the grouting galleries and the stochastic results obtained from the stochastic structural model of karstic rock mass between grouting galleries, a formula for computation of permeability tensor of fracturing system is set up, and a computation program is made with Visual Basic language. The computation results will be helpful for zoning of fissured rock masses and calculation of seepage amount as well as optimization of seepage control curtains. (3) Fractal theory is used to describe quantitatively the roughness of conduit walls of karstic systems and the sinuosity of karstic conduits. It is proposed that the roughness coefficient of kastic caves can be expressed by both fractal dimension Ds and Dr that represent respectively the extension sinuosity of karstic caves and the roughness of the conduit walls. The existing formula for calculating the seepage amount of karstic conduits is revised and programmed. The seepage amount of rock masses in the measured grouting galleries is estimated under the condition that no seepage control measures are taken before reservoir impoundment, and the results will be helpful for design and construction optimization of seepage curtains of the Shuibuya hydropower project. This report is one part of the subject "Karstic hydrogeology and the structural model and seepage hydraulics of karstic rock masses", a sub-program of "Study on seepage hydraulics of multi-layer karstic rock masses and its application in seepage control curtain engineering", which is financially supported by the Hubei Provincial key science and technology programme.
Resumo:
Social dilemmas are defined as such situations in which short-term individual and long-term collective interests are at odds (Hardin, 1968; Messick & Brewer, 1983). Severe social problems lead more and more researchers to pay attention to the issue of social dilemmas. Until now, research has widely examined the factors influencing cooperation in social dilemmas, and provided solutions to social dilemmas. In the need of theory development, previous research generally simplified the situation of realistic social dilemmas. Therefore, few studies have explored the issue of cooperation in social dilemmas in an intergroup situation. On the other hand, there has been little empirical attention for such issues in countries outside of United States and Western Europe. To meet this gap, the present study grounded itself in social identity theories and examined the effect of unequal group status on behavioral decision making in social dilemmas. To this end, the study designed three experiments to examine how individuals with different group status response psychologically and behaviorally to cooperation in intragroup and intergroup social dilemmas. In experiment 1, the study examined how independent and interdependent self- construals affect cooperative behavior in an intragroup social dilemma. The results showed that when individuals were primed with interdependent (as opposed to independent) self-construal, they consistently contributed highly, regardless of context manipulation. In contrast, those primed with independent self-construal contributed less in the investment game but only when placed in a context where group members were encouraged to think about their individual (versus shared) fate. Results supported the idea that independent self-construal in a low interdependent context produces the most competitive behavior and that this effect was partially mediated by the feeling of interaction within a group. In experiment 2, the study examined how the effect of group status on different level of cooperation in a nested social dilemma was moderated by individual status, and what roles ingroup and superordinate identifications played in the above effect. Results found that individuals in higher status groups tended to allocate more to private account and less to subgroup account compared to those in lower status group; individuals in higher status groups allocated more to higher level accounts than to private account, whereas those in lower status acted in a reverse way. The results indicated that group status (compared to individual status) exerted a positive influence on behavioral decision making in social dilemmas, with higher group status contributing more to subgroup as well as collective interests. Results also found that the effect of group status and/or individual status on cooperation in social dilemmas was moderated by sex. As for individual status, results showed that the effect of individual status on subgroup interest was significantly moderated only by the combination of higher ingroup identification and lower superordinate identification. In experiment 3, the study explored how group stability and cognitive categorization interactively influenced the relationship between group status and behavioral decision making in a social dilemma. Results did not support the prediction that group status and stability interactively affected behavioral decision-making in social dilemmas. However, it was found that this relationship was moderated by which level individuals categorized themselves at. When categorization at the individual level was salient, individuals in high status group contributed more to subgroup account than those in low status group if they perceived a stable status hierarchy; whereas they contributed more to private account and less to collective account if they perceived that the status was instable. On the other hand, when categorization at the subgroup level was salient, individuals in high status group contributed less to collective account than those in low status group if they perceived that the status was stable; whereas they contributed less to private account and more to subgroup account if they perceived an instable status relation. In summary, the present study suggests that cooperation with ingroup forms the basis of social harmony, and higher status for everyone in any given group is a necessary for social development. On the other hand, individuals in higher status group tend to be more selfish once they realize that their current status hierarchy is unstable. However, activating their collective identity will to some degree increase the level of their cooperation with the collective. The study thus provides psychological explanations on how to construct group harmony and management suggestions on how to solve social conflicts.